We report results of a search for light weakly interacting massive particle(WIMP) dark matter from the CDEX-1 experiment at the China Jinping Underground Laboratory(CJPL). Constraints on WIMP-nucleon spin-independent(SI) and spin-dependent(SD) couplings are derived with a physics threshold of 160 eVee, from an exposure of 737.1 kg-days. The SI and SD limits extend the lower reach of light WIMPs to 2 GeV and improve over our earlier bounds at WIMP mass less than 6 GeV.
The CDEX collaboration has been established for direct detection of light dark matter particles, using ultra-low energy threshold point-contact p-type germanium detectors, in China JinPing underground Laboratory (CJPL). The first 1 kg point-contact germanium detector with a sub-keV energy threshold has been tested in a passive shielding system located in CJPL. The outputs from both the point-contact P+ electrode and the outside N+ electrode make it possible to scan the lower energy range of less than 1 keV and at the same time to detect the higher energy range up to 3 MeV. The outputs from both P+ and N+ electrode may also provide a more powerful method for signal discrimination for dark matter experiment. Some key parameters, including energy resolution, dead time, decay times of internal X-rays, and system stability, have been tested and measured. The results show that the 1 kg point-contact germanium detector, together with its shielding system and electronics, can run smoothly with good performances. This detector system will be deployed for dark matter search experiments.
The China Dark Matter Experiment (CDEX) is located at the China Jinping Underground Laboratory (CJPL) and aims to directly detect the weakly interacting massive particles (WIMP) flux with high sensitivity in the low mass region. Here we present a study of tile predicted photon and electron backgrounds including the background contribution of the structure materials of the germanium detector, the passive shielding materials, and the intrinsic radioactivity of the liquid argon that serves as an anti-Compton active shielding detector. A detailed geometry is modeled and the background contribution has been simulated based on the measured radioactivities of all possible components within tile GEANT4 program. Then the photon and electron background level in the energy region of interest (〈10-2events-kg1·day 1·keV-1 (cpkkd)) is predicted based on Monte Carlo simulations. The simulated result is consistent with the design goal of the CDEX-10 experiment, 0.1cpkkd, which shows that the active and passive shield design of CDEX-10 is effective and feasible.
We report the first results on 76Ge neutrinoless double beta decay from stage one of the China dark-matter experiment (CDEX). A p-type point-contact high-purity germanium detector with a mass of 994g has been installed to detect neutrinoless double beta decay events, as well as to directly detect dark matter particles. An exposure of 304kgd has been analyzed over a wide spectral band from 500keV to 3MeV. The average event rate obtained was about 0.012 counts per keV per kg per day over the 2.039MeV energy range. The half-life of76Ge neutrinoless double beta decay derived based on this result is 70v2〉6.4× 1022 yr (90%C.L.). An upper limit on the effective Majorana-neutrino mass of 5.0eV has been achieved.
暗物质是当今物理学最基本也是最吸引人的前沿研究课题之一,对认识宇宙起源、演变和结构以及物质的本源等基本科学问题具有十分重要的意义.暗物质的理论研究和实验探测经过几十年的积累和发展已经取得了长远的进步.实验上有多种方法可以进行暗物质粒子的探测,直接探测是一种非常重要的手段.本文评述了暗物质直接探测方法的原理和当今国际国内采用直接探测法的不同实验的研究现状,着重介绍了中国暗物质实验(China Dark matter Experiment,CDEX)合作组的研究历程、探测技术和数据分析方法、以及研究取得的重要成果和未来规划.
The China Dark Matter Experiment (CDEX) Collaboration will carry out a direct search for weakly interacting massive particles with germanium detectors. Liquid argon will be utilized as an anti-Compton and cooling material for the germanium detectors. A low-background and large-area photomultiplier tube (PMT) immersed in liquid argon will be used to read out the light signal from the argon. In this paper we have carried out a careful evaluation on the performance of the PMT operating at both room and cryogenic temperatures. Based on the single photoelectron response model, the absolute gain and resolution of the PMT were measured. This has laid a foundation for PMT selection, calibration and signal analysis in the forthcoming CDEX experiments.
A 994 g mass p-type PCGe detector has been deployed during the first phase of the China Dark matter EXperiment, aiming at direct searches for light weakly interacting massive particles. Measuring the thickness of the dead layer of a p-type germanium detector is an issue of major importance since it determines the fiducial mass of the detector. This work reports a method using an uncollimated ^133Ba source to determine the dead layer thickness. The experimental design, data analysis and Monte Carlo simulation processes, as well as the statistical and systematic uncertainties are described. A dead layer thickness of 1.02 mm was obtained based on a comparison between the experimental data and the simulated results.
The inorganic CsI(Tl) crystal scintillator is a candidate anti-compton detector for the China Dark matter Experiment. Studying the intrinsic radiopurity of the CsI(Tl) crystal is an issue of major importance. The timing, energy and spatial correlations, as well as the capability of pulse shape discrimination provide powerful methods for the measurement of intrinsic radiopurities. The experimental design, detector performance and event-selection algorithms are described. A total of 359×3 kg-days data from three prototypes of CsI(Tl) crystals were taken at China Jinping Underground Laboratory (CJPL), which offers a good shielding environment. The contamination levels of internal isotopes from 137Cs, 232Th and 238U series, as well as the upper bounds of 235U series are reported. Identification of the whole α peaks from U/Th decay chains and derivation of those corresponding quenching factors are achieved.