Diabetes mellitus is the most common metabolic disease and its prevalence is increasing in many countries year by year.More than 90% of diabetes patients are type 2 diabetes,which is caused by insulin resistance and beta-cell dysfunction.In this paper,the oligomannuronate-chromium(III)complex(OM2)was prepared and its effect and mechanism on attenuating insulin resistance in diabetic C57BL/KsJ-db/db mice were studied.The results indicated that oral intake of OM2(50 mg kg-1d-1)for 42 d decreased blood glucose and lipid concentration,which was associated with the reduced serum insulin concentration and insulin resistance.According to western blot assay,OM2 could activate AMPK pathway to regulate glycogen synthesis,gluconeogenesis and lipid metabolism in the liver,and attenuate the hyperglycemic symptom in db/db mice.The effects of OM2 on attenuating insulin resistance were com-parable to that of the established antidiabetic drug metformin,and OM2 showed less adverse effect than metformin in vivo.Based on the effectiveness and low toxicity,OM2 may potentially be used for prevention and treatment of type 2 diabetes mellitus.
To explore the polysaccharides from selected seaweeds of Atlantic Canada and to evaluate their potential anti-influenza virus activities, polysaccharides were isolated from several Atlantic Canadian seaweeds, including three red algae (Polysiphonia lanosa, Furcellaria lumbricalis, and Palmaria palmata), two brown algae (Ascophyllum nodosum and Fucus vesiculosus), and one green alga (Ulva lactuca) by sequential extraction with cold water, hot water, and alkali solutions. These polysaccharides were ana-lyzed for monosaccharide composition and other general chemical properties, and they were evaluated for anti-influenza virus activities. Total sugar contents in these polysaccharides ranged from 15.4% (in U. lactuca) to 91.4% (in F. lumbricalis); sulfation level was as high as 17.6% in a polysaccharide from U. lactuca, whereas it could not be detected in an alikali-extract from P. palmaria. For polysaccharides from red seaweeds, the main sugar units were sulfated galactans (agar or carrageenan) for P. lanosa, F. lumbricalis, and xylans for P. palmata. In brown seaweeds, the polysaccharides largely contained sulfated fucans, whereas the polysaccharides in green seaweed were mainly composed of heteroglycuronans. Screening for antiviral activity against influenza A/PR/8/34 (H1N1) virus revealed that brown algal polysaccharides were particularly effective. Seaweeds from Atlantic Canada are a good source of marine polysaccharides with potential antiviral properties.
JIAO GuanglingYU GuangliWANG WeiZHAO XiaoliangZHANG JunzengStephen H. Ewart