An implicit electrostatic particle-in-cell/Monte Carlo (PIC/MC) algorithm is developed for the magnetized discharging device simulation. The inductive driving force can be considered. The direct implicit PIC algorithm (DIPIC) and energy conservation scheme are applied together and the grid heating can be eliminated in most cases. A tensor-susceptibility Poisson equation is constructed. Its discrete form is made up by a hybrid scheme in one-dimensional (1D) and two- dimensional (2D) cylindrical systems. A semi-coarsening multigrid method is used to solve the discrete system. The algorithm is applied to simulate the cylindrical magnetized target fusion (MTF) pre-ionization process and get qualitatively correct results. The potential application of the algorithm is discussed briefly.
运用密度泛函理论平面波超软赝势,对镁离子掺杂的钙铝氧化物磷光体(Mg_(0.5)Ca_(0.5)Al_2O_4)的电子结构和光学性质进行了计算.计算结果表明,杂质的引入使材料的带隙降低了0.43 e V,光学吸收范围展宽,吸收强度增大,在低能吸收区出现一个额外吸收峰.对电子结构的分析表明,杂化了的Ca3d轨道与O2p轨道的强相互作用占据着导带底部,镁杂质能级进入导带靠近导带底部是决定掺杂材料光学性质的主要因素.