Dense Z-pinch plasmas are powerful and energy-efficient laboratory sources of X-rays,and show the possibility to drive inertial confinement fusion(ICF).Recent advances in wire-array Z-pinch and Z-pinch dynamic hohlraum(ZPDH)researches at the Institute of Applied Physics and Computational Mathematics are presented in this paper.Models are setup to study different physical processes.A full circuit model(FCM)was used to study the coupling between Z-pinch implosion and generator discharge.A mass injection model with azimuthal modulation was setup to simulate the wire-array plasma initiation,and the two-dimensional MHD code MARED was developed to investigate the Z-pinch implosion,MRT instability,stagnation and radiation.Implosions of nested and quasi-spherical wire arrays were also investigated theoretically and numerically.Key processes of ZPDH,such as the arrayefoam interaction,formation of the hohlraum radiation,as well as the following capsule ablation and implosion,were analyzed with different radiation magneto-hydrodynamics(RMHD)codes.An integrated 2D RMHD simulation of dynamic hohlraum driven capsule implosion provides us the physical insights of wire-array plasma acceleration,shock generation and propagation,hohlraum formation,radiation ablation,and fuel compression.
Ning DingYang ZhangDelong XiaoJiming WuZihuan DaiLi YinZhiming GaoShunkai SunChuang XueCheng NingXiaojian ShuJianguo Wang
In this paper, the characteristics of magneto-Rayleigh-Taylor(MRT) instability of liner plasmas in Mag LIF is theoretically investigated. A three-region slab model, based on ideal MHD equations, is used to derive the dispersion relation of MRT instability. The effect of compressibility on the development of MRT instability is specially examined. It is shown that the growth rate of MRT instability in compressible condition is generally lower than that in incompressible condition in the presence of magnetic field. In the case of zero magnetic field, the growth rate in compressible assumption is approximately the same as that in incompressible assumption. Generally, MRT instability in(x, y) plane can be remarkably mitigated due to the presence of magnetic field especially for short-wavelength perturbations. Perturbations may be nearly completely mitigated when the magnetic field is increased to over 1000 T during liner implosions. The feedthrough of MRT instability in liner outer surface on inner surface is also discussed.