您的位置: 专家智库 > >

国家自然科学基金(41023002)

作品数:19 被引量:126H指数:6
发文基金:国家自然科学基金国家重点基础研究发展计划国家高技术研究发展计划更多>>
相关领域:天文地球自动化与计算机技术环境科学与工程金属学及工艺更多>>

文献类型

  • 19篇中文期刊文章

领域

  • 18篇天文地球
  • 2篇自动化与计算...
  • 1篇金属学及工艺
  • 1篇环境科学与工...

主题

  • 4篇FG
  • 4篇FGOALS
  • 3篇ENSO
  • 2篇OCEANI...
  • 2篇TREND
  • 2篇COUPLE...
  • 2篇GLOBAL...
  • 2篇MONSOO...
  • 2篇S-
  • 2篇SCENAR...
  • 2篇WARMIN...
  • 1篇低分辨率
  • 1篇印度尼西亚贯...
  • 1篇托雷斯海峡
  • 1篇线速度
  • 1篇海洋模式
  • 1篇分辨率
  • 1篇NEAR
  • 1篇ONSET
  • 1篇OVER

传媒

  • 10篇Advanc...
  • 6篇Atmosp...
  • 1篇Scienc...
  • 1篇Scienc...
  • 1篇Journa...

年份

  • 4篇2015
  • 3篇2014
  • 9篇2013
  • 3篇2012
19 条 记 录,以下是 1-10
排序方式:
The Application of Flux-Form Semi-Lagrangian Transport Scheme in a Spectral Atmosphere Model被引量:4
2013年
A flux-form semi-Lagrangian transport scheme (FFSL) was implemented in a spectral atmospheric GCM developed and used at IAP/LASG. Idealized numerical experiments show that the scheme is good at shape preserving with less dissipation and dispersion, in comparison with other conventional schemes, hnportantly, FFSL can automatically maintain the positive definition of the transported tracers, which was an underlying problem in the previous spectral composite method (SCM). To comprehensively investigate the impact of FFSL on GCM results, we conducted sensitive experiments. Three main improvements resulted: first, rainfall simulation in both distribution and intensity was notably improved, which led to an improvement in precipitation frequency. Second, the dry bias in the lower troposphere was significantly reduced compared with SCM simulations. Third, according to the Taylor diagram, the FFSL scheme yields simulations that are superior to those using the SCM: a higher correlation between model output and observation data was achieved with the FFSL scheme, especially for humidity in lower troposphere. However, the moist bias in the middle and upper troposphere was more pronounced with the FFSL scheme. This bias led to an over-simulation of precipitable water in comparison with reanalysis data. Possible explanations, as well as solutions, are discussed herein.
王晓聪刘屹岷吴国雄Shian-Jiann LIN包庆
The Baseline Evaluation of LASG/IAP Climate System Ocean Model (LICOM) Version 2被引量:49
2012年
The baseline performance of the latest version (version 2) of an intermediate resolution, stand-alone climate oceanic general circulation model, called LASG/IAP (State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics/Institute of Atmospheric Physics) Climate system Ocean Model (LICOM), has been evaluated against the observation by using the main metrics from Griffies et al. in 2009. In general, the errors of LICOM2 in the water properties and in the circulation are comparable with the models of Coordinated Ocean-ice Reference Experiments (COREs). Some common biases are still evident in the present version, such as the cold bias in the eastern Facific cold tongue, the warm biases off the east coast of the basins~ the weak poleward heat transport in the Atlantic, and the relatively large biases in the Arctic Ocean. A unique systematic bias occurs in LICOM2 over the Southern Ocean, compared with CORE models. It seems that this bias may be related to the sea ice process around the Antarctic continent.
刘海龙林鹏飞俞永强张学洪
Heat Budget of the South-Central Equatorial Pacific in CMIP3 Models
2014年
ABSTRACT Using data from 17 coupled models and nine sets of corresponding Atmospheric Model Intercomparison Project (AMIP) results, we investigated annual and seasonal variation biases in the upper 50 m of the south-central equatorial Pacific, with a focus on the double-ITCZ bias, and examined the causes for the amplitude biases by using heat budget analysis. The results showed that, in the research region, most of the models simulate SSTs that are higher than or similar to observed. The simulated seasonal phase is close to that observed, but the amplitudes of more than half of the model results are larger than or equal to observations. Heat budget analysis demonstrated that strong shortwave radiation in individual atmospheric models is the main factor that leads to high SST values and that weak southward cold advection is an important mechanism for maintaining a high SST. For seasonal circulation, large surface shortwave radiation amplitudes cause large SST amplitudes.
LIU XiangcuiLIU Hailong
Projected Changes in Asian Summer Monsoon in RCP Scenarios of CMIP5被引量:7
2012年
Responses of the Asian Summer Monsoon(ASM) in future projections have been studied based on two core future projections of phase five of the Coupled Model Intercomparison Project(CMIP5) coordinated experiments with the IAP-coupled model FGOALS_s2(the Flexible Global Ocean-Atmosphere-Land System Model).The projected changes of the ASM in climatological mean and interannual variability were respectively reported.Both the South Asian Summer Monsoon(SASM) and the East Asian Summer Monsoon(EASM) were intensified in their climatology,featuring increased monsoon precipitation and an enhanced monsoon lower-level westerly jet flow.Accordingly,the amplitude of the annual cycle of rainfall over East Asia(EA) is enhanced,thereby indicating a more abrupt monsoon onset.After the EA monsoon onset,the EASM marched farther northward in the future scenarios than in the historical runs.In the interannual variability,the leading pattern of the EASM,defined by the first multi-variable EOF analysis over EA,explains more of the total variances in the warmest future scenario,specifically,Representative Concentration Pathway(RCP8.5).Also,the correlation coefficients analysis suggests that the relationship between the EASM interannual variations and ENSO was significantly strengthened in the future projections,which may indicate improved predictability of the EASM interannual variations.
BAO Qing
关键词:CMIPENSOFGOALS
Intensified Eastward and Northward Propagation of Tropical Intraseasonal Oscillation over the Equatorial Indian Ocean in a Global Warming Scenario被引量:2
2013年
Northward propagation in summer and eastward propagation in winter are two distinguished features of tropical intraseasonal oscillation (TISO) over the equatorial Indian Ocean. According to numerical modeling results, under a global warming scenario, both propagations were intensified. The enhanced northward propagation in summer can be attributed to the enhanced atmosphere-ocean interaction and the strengthened mean southerly wind; and the intensified eastward propagation in winter is associated with the enhanced convection-wind coupling process and the strengthened equatorial Kevin wave. Future changes of TISO propagations need to be explored in more climate models.
杨静包庆王晓聪
Long-term Stability and Oceanic Mean State Simulated by the Coupled Model FGOALS-s2被引量:4
2013年
We describe the long-term stability and mean climatology of oceanic circulations simulated by version 2 of the Flexible Global Ocean-Atmosphere-Land System model (FGOALS-s2). Driven by pre-industrial forcing, the integration of FGOALS-s2 was found to have remained stable, with no obvious climate drift over 600 model years. The linear trends of sea SST and sea surface salinity (SSS) were -0.04℃ (100 yr)-1 and 0.01 psu (100 yr)-1, respectively. The simulations of oceanic temperatures, wind-driven circulation and thermohaline circulation in FGOALS-s2 were found to be comparable with observations, and have been substantially improved over previous FGOALS-s versions (1.0 and 1.1). However, significant SST biases (exceeding 3℃) were found around strong western boundary currents, in the East China Sea, the Sea of Japan and the Barents Sea. Along the eastern coasts in the Pacific and Atlantic Ocean, a warm bias (〉3℃) was mainly due to overestimation of net surface shortwave radiation and weak oceanic upwelling. The difference of SST biases in the North Atlantic and Pacific was partly due to the errors of meridional heat transport. For SSS, biases exceeding 1.5 psu were located in the Arctic Ocean and around the Gulf Stream. In the tropics, freshwater biases dominated and were mainly caused by the excess of precipitation. Regarding the vertical dimension, the maximal biases of temperature and salinity were located north of 65°N at depths of greater than 600 m, and their values exceeded 4℃ and 2 psu, respectively.
林鹏飞俞永强刘海龙
关键词:FGOALS
Decadal change of East Asian summer tropospheric temperature meridional gradient around the early 1990s被引量:3
2015年
During 1979–2004, the East Asian summer precipitation has experienced another significant decadal shift around the early 1990 s. Based on three radiosonde temperature datasets and four reanalysis datasets, this paper examines the decadal change of the East Asian summer tropospheric temperature around the early 1990 s. The results show that the meridional gradient of layer mean upper tropospheric temperature for 200–500 h Pa(here after UTT, UTT is upper tropospheric temperature) also underwent an obvious decadal decrease around 1992. The tropospheric temperature south to 35°N becomes decadal cooling, centered along the Yangtze River Valley, while the tropospheric temperature north to 35°N shows a decadal warming, centered in Northwest China-Mongolia. JRA-25 reanalysis is better than the other reanalysis datasets in revealing this decadal change. This decadal shift of East Asian summer UTT may be ascribed to the decadal change of the ENSO period from low-frequency oscillation(4–6 yr) to quasi-biennial oscillation since 1992. It behaves as an increase of ENSO developing events and a reduction of ENSO decaying events. It leads to stronger forcing of ENSO developing summer and weaker forcing of ENSO decaying summer, leading to the dominant role of monopole cooling mode of East Asian UTT after 1992, in contrast to the dominant role of dipole mode of East Asia UTT before 1992. The summer UTT difference between 1993–2004 and 1979–1992 shows a "South cooling-North Warming" pattern, and thereby contributes to the interdecadal decrease of East Asian summer UTT meridional gradient around 1992.
ZHANG LiXiaZHOU TianJun
Sensitivity of Precipitation in Aqua-Planet Experiments with an AGCM
2014年
The sensitivity of precipitation was studied by conducting control aqua-planet experiments(APEs) with a model to determine atmospheric general circulation.The model includes two versions: that with a spectral dynamical core(SAMIL) and that with a finite-volume dynamical core(FAMIL).Three factors were investigated including dynamical core,time-step length,and horizontal resolution.Numerical results show that the dynamical core significantly affects the structure of zonal averaged precipitation.FAMIL exhibited an equatorial precipitation belt with a single narrow peak,and SAMIL showed a broader belt with double peaks.Moreover,the time step of the model physics is shown to affect the zonal-averaged tropical convective precipitation ratio such that a longer time step leads to more production and consumption of convective available potential energy and convection initiated away from the equator,which corresponds to equatorial double peaks of precipitation.Further,precipitation is determined to be sensitive to horizontal resolution such that higher horizontal resolution allows for more small-scale kinetic energy to be resolved and leads to a broader probability distribution of low-level vertical velocity.This process results in heavier rainfall and convective precipitation extremes in the tropics.Abstract The sensitivity of precipitation was studied by conducting control aqua-planet experiments(APEs)with a model to determine atmospheric general circulation.The model includes two versions:that with a spectral dynamical core(SAMIL)and that with a finite-volume dynamical core(FAMIL).Three factors were investigated including dynamical core,time-step length,and horizontal resolution.Numerical results show that the dynamical core significantly affects the structure of zonal averaged precipitation.FAMIL exhibited an equatorial precipitation belt with a single narrow peak,and SAMIL showed a broader belt with double peaks.Moreover,the time step of the model physics is shown to affect the zonal-averaged tropical convective preci
YU Hai-YangBAO QingZHOU Lin-JiongWANG Xiao-CongLIU Yi-Min
Long-term Behaviors of Two Versions of FGOALS2 in Preindustrial Control Simulations with Implications for 20th Century Simulations被引量:9
2013年
Climate drift in preindustrial control (PICTL) simulations can lead to spurious climate trends and large uncertainties in historical and future climate simulations in coupled models. This study examined the long- term behaviors and stabilities of the PICTL simulations in the two versions of FGOALS2 (the Flexible Global Ocean-Atmosphere-Land System model Version 2), which have been submitted to the Coupled Model Inter- comparison Project Phase 5 (CMIP5). As verified by examining time series of thermal fields and their linear trends, the PICTL simulations showed stable long-term integration behaviors and no obvious climate drift [the magnitudes of linear trends of SST were both less than 0.04℃ (100 yr)-1] over multiple centuries. The changed SSTs in a century (that corresponded to the linear trends) were less than the standard deviations of annual mean values, which implied the internal variability was not affected. These trend values were less than 10~0 of those of global averaged SST from observations and historical runs during the periods of slow and rapid warming. Such stable long-term integration behaviors reduced the uncertainty of the estimation of global warming rates in the historical and future climate projections in the two versions of FGOALS2. Compared with the trends in the Northern Hemisphere, larger trends existed in the SST and sea ice extents at the middle to high latitudes of the Southern Hemisphere (SH). To estimate the historical and future climate trends in the SH or at some specific regions in FGOALS2, corrections needed to be carried out. The similar long-term behaviors in the two versions of FGOALS2 may be attributed to proper physical processes in the ocean model.
林鹏飞刘海龙俞永强周天军
关键词:FGOALS
Assessment of Historical Climate Trends of Surface Air Temperature in CMIP5 Models
2014年
This study assesses the historical climate trends of surface air temperature(SAT), their spatial distributions, and the hindcast skills for SAT during 1901– 2000 from 24 Coupled Model Intercomparison Project Phase 5(CMIP5) models. For the global averaged SAT, most of the models(17/24) effectively captured the increasing trends(0.64°C/century for the ensemble mean) as the observed values(- 0.6°C/century) during the period of 1901–2000, particularly during a rapid warming period of 1970–2000 with the small model spread. In addition, most of the models(22/24) showed high hindcast skills(the correlation coefficient, R 〉 0.8). For the spatial pattern of SAT, the models better simulated the relatively larger warming at the middle-to-high latitudes in the Northern Hemisphere than that in the Southern Hemisphere and the greater warming on the land than that in the ocean between 40°S and 40°N. The simulations underestimated the warming along some ocean boundaries but overestimated warming in the Arctic Ocean. Most of the coupled models were able to reproduce the large-scale features of SAT trends in most regions excluding Antarctica, some parts of the Pacific Ocean, the North Atlantic Ocean near Greenland, the southwestern Indian Ocean, and the Arctic Ocean. The outgoing longwave radiation(OLR) and incoming shortwave radiation(ISR) at the top of the atmosphere(TOA) and the downward longwave(LW) radiation and sensible heat flux at the surface had positive contributions to the increasing trends in most of the models.
FENG Xiao-LiZHI HaiLIN Peng-FeiLIU Hai-Long
关键词:TRENDWARMING
共2页<12>
聚类工具0