Steel samples with size of 10 mm× 10 mm×5 mm were cut clown from a hot rolled Mn steel microalloyed by Ti, Cr and Nb and produced by compact strip production (CSP) technology. The samples were annealed at 950 ℃ for different time firstly, and then hot rolled or cooled in the air, in water and in furnace, respectively. Auger elee tron spectroscopy (AES) was used to study the effects of annealing and hot roiling on the segregation of arsenic at grain boundary (GB) in the steel. The results indicated that a higher content of arsenic was found at grain boundaries than in the matrix when the steel was annealed at 950 ℃ for 2 h and then cooled to room temperature by water quenching. But the content of arsenic at grain boundaries was similar to that in the matrix when the steel was an- nealed at 950 ℃ for 2 h and then cooled to room temperature by furnace cooling. A longer holding time, such as 12 h and 36 h at 950 ℃, resulted in a similar arsenic content at grain boundaries to that in the matrix of the steels. Hot rolling led to a similar content of arsenic at grain boundaries and within grains in the steels as well.
Auger electron spectroscopy (AES) was used to investigate the grain boundary segregation of arsenic and nitrogen in a kind of microalloyed steel produced by a compact strip production (CSP) technology at 950 to 1100℃, which are similar to the hot working temperature of the steel on a CSP production line. It was discovered that arsenic segregated on grain boundaries when the steel was annealed at 950℃ for 2 h. When the annealing temperature increased to 1100℃, arsenic was also found to have segregated on grain boundaries in the early annealing stage, for instance, within the first 5 min annealing time. However, if the holding time of the steel at this temperature increased to 2 h, arsenic diffused away from grain boundaries into the matrix again. Nitrogen was not found to have segregated on grain boundaries when the steel was annealed at a relatively low temperature, such as 950℃. But when the annealing temperature increased to 1100℃, nitrogen was detected to have segregated at grain boundaries in the steel.
A novel diffusion couple method was used to investigate the interface diffusion of arsenic into a Nb-Ti microalloyed low carbon steel and its effects on phase transformation at the interface. It is discovered that the content of arsenic has great effect on grain growth and phase transformation at high temperature. When the arsenic content is no more than lwt%, there is no obvious grain growth and no obvious ferrite transitional region formed at the diffusion interface. However, when the arsenic content is no less than 5wt%, the grain grows very rapidly. In addition, the arsenic-enriched ferrite transitional layer forms at the diffusion interface in the hot-rolling process, which results from a slower diffusion rate of arsenic atoms than that of carbon in ferrite.