An improved pulse width modulation (PWM) neural network VLSI circuit for fault diagnosis is presented, which differs from the software-based fault diagnosis approach and exploits the merits of neural network VLSI circuit. A simple synapse multiplier is introduced, which has high precision, large linear range and less switching noise effects. A voltage-mode sigmoid circuit with adjustable gain is introduced for realization of different neuron activation functions. A voltage-pulse conversion circuit required for PWM is also introduced, which has high conversion precision and linearity. These 3 circuits are used to design a PWM VLSI neural network circuit to solve noise fault diagnosis for a main bearing. It can classify the fault samples directly. After signal processing, feature extraction and neural network computation for the analog noise signals including fault information,each output capacitor voltage value of VLSI circuit can be obtained, which represents Euclid distance between the corresponding fault signal template and the diagnosing signal, The real-time online recognition of noise fault signal can also be realized.
The robust fault detection filter design for uncertain linear systems with nonlinear perturbations is formulated as a two-objective optimization problem. Solvable conditions for the existence of such a robust fault detection filter are given in terms of matrix inequalities (MIs), which can be solved by applying iterative linear matrix inequality (ILMI) techniques. Particularly, compared with two existing LMI methods, the developed algorithm is more generalized and less conservative.An illustrative example is given to show the effectiveness of the proposed method.