A novel approach for the actuator fault diagnosis of time-delay systems is presented by using an adaptive observer technique. Systems without model uncertainty are initially considered, followed by a discussion of a general situation where the system is subjected to either model uncertainty or external disturbance. An adaptive diagnostic algorithm is developed to diagnose the fault, and a modified version is proposed for general system to improve robustness. The selection of the threshold for fault detection is also discussed. Finally, a numerical example is given to illustrate the efficiency of the proposed method.
This paper deals with the problem of fault diagnosis problem for a class of linear systems with delayed state and uncertainty. The systems are transformed into two different subsystems. One is not affected by actuator faults so that a robust observer can be designed under certain conditions. The other whose states can be measured is affected by the faults. The proposed observer is utilized in an analytical-redundancy-based approach for actuator and sensor fault detection and diagnosis in time-delay systems. Finally, the applicability and effectiveness of the proposed method is illustrated through numerical examples.
Proposes an H_∞ deconvolution design for time-delay linear continuous-time systems. We first analyze the general structure and innovation structure of the H_∞ deconvolution filter. The deconvolution filter with innovation structure is made up of an output observer and a linear mapping, where the latter reflects the internal connection between the unknown input signal and the output estimate error. Based on the bounded real lemma, a time domain design approach and a sufficient condition for the existence of deconvolution filter are presented. The parameterization of the deconvolution filter can be completed by solving a Riccati equation. The proposed method is useful for the case that does not require statistical information about disturbances. At last, a numerical example is given to demonstrate the performance of the proposed filter.