In this paper, we analyze the Bregman iterative model using the G-norm. Firstly, we show the convergence of the iterative model. Secondly, using the source condition and the symmetric Bregman distance, we consider the error estimations between the iterates and the exact image both in the case of clean and noisy data. The results show that the Bregman iterative model using the G-norm has the similar good properties as the Bregman iterative model using the L2-norm.
A proper orthogonal decomposition (POD) method is applied to a usual finite element (FE) formulation for parabolic equations so that it is reduced into a POD FE formulation with lower dimensions and enough high accuracy. The errors between the reduced POD FE solution and the usual FE solution are analyzed. It is shown by numerical examples that the results of numerical computations are consistent with theoretical conclusions. Moreover, it is also shown that this validates the feasibility and efficiency of POD method.
In the paper,we consider a nonlinear boundary value problem with integral boundary value conditions.By a generalization of the Leggett-Williams fixed-point theorem,we provide sufficient conditions for the existence of at least three positive solutions to the problem.An example is introduced to demonstrate our result.
Zhen Liu,Dexiang Ma (Dept.of Math.,North China Electric Power University,Beijing 102206)