Let D = (V, E) be a primitive digraph. The vertex exponent of D at a vertex v∈ V, denoted by expD(v), is the least integer p such that there is a v →u walk of length p for each u ∈ V. Following Brualdi and Liu, we order the vertices of D so that exPD(V1) ≤ exPD(V2) …≤ exPD(Vn). Then exPD(Vk) is called the k- point exponent of D and is denoted by exPD (k), 1≤ k ≤ n. In this paper we define e(n, k) := max{expD (k) | D ∈ PD(n, 2)} and E(n, k) := {exPD(k)| D ∈ PD(n, 2)}, where PD(n, 2) is the set of all primitive digraphs of order n with girth 2. We completely determine e(n, k) and E(n, k) for all n, k with n ≥ 3 and 1 ≤ k ≤ n.