The western Qinling (秦岭) orogenic belt is one of the outermost ranges in the northeas- tern Tibetan Plateau. Its tectonic uplift history is therefore essential to insight on the evolution history of the plateau. However, the timing of deformation and uplift history is still poorly known. Fortunately, its Cenozoic orogenic history is recorded in an excellent synorogenic sedimentary sequence exposed in the Tianshui (天水)Ba- sin, the northeastern foot of western Qinling. Ac- cording to sedimentary-tectonic analysis of the Yaodian (尧店) and Lamashan (喇嘛山) sections based on the previous magnetostratigraphy stu- dies, we speculated that two stages (occurred at 9.2-7.4 and -3.6 Ma) of variation in depositional facies were attributed to the uplift and deforma- tion of the western Qinling, and the modern structure geomorphic frame of the northeastern Tibet formed after 2.6 Ma. Furthermore, four stages of active processes along the western Qinling occurred at 49--41, 34-27, 25-19 and -13 Ma, are deciphered from an integrated detrital apatite fission-track data of the Ganquan (甘泉), Yaodian main sections and seven small ones. The former two are represents the exhumation episodes triggered by tectonism and the others attributed to the volcanic signals.