This paper is concerned with a piecewise smooth rational quasi-interpolation with algebraic accuracy of degree(n+1)to approximate the scattered data in R 3.We firstly use the modified Taylor expansion to expand the mean value coordinates interpolation with algebraic accuracy of degree one to one with algebraic accuracy of degree(n+1).Then,based on the triangulation of the scattered nodes in R^(2),on each triangle a rational quasi-interpolation function is constructed.The constructed rational quasi-interpolation is a linear combination of three different expanded mean value coordinates interpolations and it has algebraic accuracy of degree(n+1).By comparing accuracy,stability,and efficiency with the C^(1)-Tri-interpolation method of Goodman[16]and the MQ Shepard method,it is observed that our method has some computational advantages.