结合干涉雷达的天线结构和二维波达方向(direction of arrival,DOA)估计方法,提出一种基于二维干涉式幅相估计的分布式相参阵盲DOA估计算法。利用二维干涉式幅相估计算法的空间谱和模型阶数选择准则获得目标个数和目标方向余弦的粗估计;使用子阵间的相位中心偏移来获得目标方向余弦的精估计;针对分布孔径带来的测角模糊问题,采用双尺度解模糊算法实现分布式阵列的高精度方向估计。仿真结果验证了分布式相参阵的高精度测角性能及所提算法的有效性,也验证了分布阵DOA估计中存在基线模糊门限。
针对现有分离式电磁矢量传感器阵列的两维波达方向(Direction of Arrival,DOA)估计存在的两个问题:其一,当入射信号在时域上不具有旋转不变性时,现有算法失效;其二,无法实现阵列的两维孔径扩展导致两维DOA估计精度较差,提出了一种改进的分离式电磁矢量传感器阵列结构.首先利用所提阵列的空域旋转不变性代替时域旋转不变性得到其中一维方向余弦的高精度估计;其次结合矢量叉乘法与相位干涉法得到另一维的方向余弦高精度估计;最后对两维方向余弦进行三角操作得到目标的两维DOA估计.本文算法摆脱了对入射信号形式的依赖,实现了阵列的两维孔径扩展,使得两维DOA估计精度大大提高.仿真结果证明了本文算法的有效性.
为了提高分布式阵列在低信噪比(signal-to-noise ratio,SNR)条件下的波达方向(direction-of-arrival,DOA)估计性能,同时放宽阵列物理孔径扩展程度的限制,提出了一种基于旋转不变子空间(estimation of signal parameters via rotational invariance techniques,ESPRIT)的多基线分布式阵列DOA估计方法。该方法通过优化分布式阵列结构,在子阵间使用多基线结构布阵,结合ESPRIT算法和多步解模糊方法得到多基线分布式阵列的高精度无模糊DOA估计。此外,利用最大后验概率准则近似法分析分布式阵列DOA估计的门限效应,给出了SNR门限和基线长度门限的近似计算方法。计算机仿真结果验证了所提方法的有效性。
针对非同构分布式阵列无法使用旋转不变子空间算法(estimation of signal parameters via rotation invariant technique algorithm,ESPRIT),同时为了提高非同构分布式阵列的角度估计精度,提出基于求根降秩算法(root rank reduction estimator,root-RARE)的目标波达方向估计方法。由于分布式阵列的基线长度远大于半波长,合成方向图出现栅瓣,导致测角模糊。算法以root-RARE与多重信号分类算法(multiple signal classification,MUSIC)联合解模糊,以root-RARE得到的粗估计为参考,解整个非同构分布式阵列MUSIC谱估计的模糊,从而得到高精度无模糊的估计。推导非同构分布式阵列方向估计的克拉美罗界,分析算法的波达方向估计性能,同时分析分布式阵列方向估计时的基线模糊门限与信噪比门限之间的关系。仿真结果验证所提算法方向估计的正确性及有效性。
为了进一步提高分布式阵列的自由度和分辨力,提出一种分布式nested阵列。该阵列将nested阵列作为分布式阵列的子阵。基于Khatri-Rao积,nested子阵可提高整个阵列的自由度。分布式nested阵列以较少的阵元数及硬件成本实现大的孔径和较高的分辨力,而且提高了目标波达方向(direction of arrival,DOA)估计的精度。并利用基于Khatri-Rao积的空间平滑酉旋转不变子空间(estimation of signal parameters via rotational invariance techniques,ESPRIT)算法进行DOA估计。其先对协方差矩阵向量化提高自由度,然后利用空间平滑对新数据协方差矩阵进行秩恢复,最后使用双尺度酉ESPRIT算法得到DOA估计。仿真结果证明所提方法的有效性。