Germination tests are currently the most widely used method to evaluate seed quality of Ginkgo biloba L., but they are time-consuming and labor intensive. Oxygen-sensing technology, based on the principle of fluorescence quenching to detect oxygen and assess seed quality was used to rapidly evaluate seed quality of two varieties (Shandong Tancheng 202 and Zhejiang Dafoshou) of G. biloba from five mother plants. Fifteen samples of three vigor levels were produced by accelerated aging treatments. This process was applied in duplicate. A portable oxygen-sensing detector was employed to measure oxygen content during seed germination in a closed system at 25 A degrees C each day until day 14. Four oxygen metabolism indices were calculated: oxygen consumption index, oxygen consumption rate, critical oxygen concentration, and theoretical germination time (T (GT)). Additionally, we tested laboratory germination and field emergence. The results of a one-way analysis of variance and correlation analysis showed that T (GT) was the candidate index to evaluate seed quality of G. biloba. Therefore, the T (GT) value was used to validate the reliability of oxygen-sensing evaluation for Zhejiang Dafoshou seeds kept under four storage conditions. The trend in the change in oxygen metabolism agreed completely agreement with that of seed germination under all storage conditions. The oxygen-sensing test reliably and rapidly assessed seed quality of G. biloba. The germination rate of Zhejiang Dafoshou was accurately predicted by T (GT).
Oxygen sensing technology was employed to study the rapid methods for seed vigor assessment of Chinese fir (Cunninghamia lanceolata) and Masson pine (Pinus massoniana). Firstly, seeds of five lots were performed using accelerated aging (AA) into three vigor levels. Then, four oxygen sensing indices, including increased metabolism time (IMT), oxygen metabolism rate (OMR), critical oxygen pressure (COP), relative germination time (RGT) and the control indiees such as labora- tory germination indices, dehydrogenase activity (DA), and electrical conductivity (EC) were analyzed by the tests of 15 samples. The results of correlation analysis between these indices and field emergence per- formances based on two-year and two-spot data showed that RGT and OMR should be indicated as the optimal oxygen sensing indices to rap- idly and automatically evaluate seed vigor of Chinese fir and Masson pine, respectively. On the basis, one-variable linear regression equations were built to forecast their field emergence performances by the two oxygen sensing indices.