In this paper, by means of the normal family theory, we estimate the growth order of meromorphic solutions of some algebraic differential equations and improve the related result of Barsegian et al. [6]. We also give some examples to show that our results occur in some special cases.
In this paper, we first employ the complex method to deritive all meromorphic solutions of an auxiliary ordinary differential equation, and then find all meromorphic exact solutions of the modified ZK equation, modified KdV equation, nonlinear Klein-Gordon equation and modified BBM equation. Our work shows that there exist some classes of rational solutions wr,2 (z) and simple periodic solutions ws,1 (z) which are new and are not degenerated successively to by the elliptic function solutions.