The hydroxy yttrium hexaborate,Y[B2O3(OH)]3,has been synthesized under mild hydrothermal conditions at 458 K.The crystal structure was solved and refined from single-crystal X-ray diffraction.It adopts a trigonal space group R3c(No.161) with a = 8.3942(4),c = 20.6484(12) ,V = 1260.03(12) 3,YB6H3O12,Mr = 348.79,Z = 6,Dc = 2.758 g/cm3,F(000) = 1008,μ = 7.015 mm-1,R = 0.0321 and wR = 0.0772.Its crystal structure is made up of six-membered rings,alternating three-connected [BO3(OH)] tetrahedra and planar [BO3] trigonal groups,which are interconnected with each other by sharing their common oxygen corners to form a three-dimensional framework structure with six-membered ring channels that are occupied by the yttrium atoms and run along the c axis.FT-IR,Raman,and TG-DTA results are also presented.
A vanadyl phosphate containing a new member of tancoite-like single chain, (DAPH2)[VIVO(HPO4)2]·xH20 (x ≈ 0.2, DAP = 1,3-diaminopropane, C3H10N2), has been synthesized under hydro(solvo)thermal conditions. It crystallizes in orthorhombic space group P21212 (No. 18) with a = 7.1730(14), b = 19.252(4), c = 8.6557(17) A, Z= 4, V= 1195.3(4)A3, C3H14.38N2P2VO9.19, Mr = 338.47, Dc = 1.881 g/cm3,μ(MoKa) = 1.138 mm-1 and F(000) = 692. The final full-matrix least-squares refinement converged to R = 0.0408, wR = 0.1046 for 2498 observed reflections with I 〉 2σ(I) and R = 0.0456 and wR = 0.1080 for all data (2750) and S = 1.001. Its one-dimensional 1 structure consists of tancoite-like ∞1 {vIVO(HPO4)2}2- single chains surrounded by DAPH22+ ions and water molecules. The single chain is built from trans-corner-sharing octahedral {VIV= O…VIV} backbone loop-branched by HPO4 groups like staple forming a new member of tancoite single chain. Due to the special coordination of VIVO6, the ∞1 {VO(HPO4)2-} chain adopts a larger M-O-M angle (V-O-V = 135°) than those of tancoite chains reported before. The corner-sharing linear {VIV = O…VIV} chain structure also leads to a one-dimensional weak antiferromagnetic interaction at low temperature. The magnetic measurements confirm the 4+ valence state of vanadium. IR and TG results of the title compound are also discussed.
A novel inorganic-organic hybrid compound, {[Co(dien)]4[0aO4)MoV8(wV10.56MoV10.44)4- O33(OH)3]}'nH20 (1, n = 1, dien = diethylenetriamine), has been synthesized hydrothermally and characterized by single-crystal X-ray diffraction. Compound 1 crystallizes in the triclinic system with a = 11.927(2), b = 13.328(3), c = 19.306(4)A, a = 93.76(3), β = 94.14(3), γ = 109.99(3)°, V= 2863.2(12) A3, space group P1 and Z = 2 at 173 K. The final full-matrix least-squares refinement converged to R = 0.049 for 9621 observed reflections with 1 〉 2σ(I) and wR = 0.139 for all data (9871) and S = 1.073. Crystal structure analysis shows that 1 contains a kind of the first reported mixed-valence and molybdenum-tungsten mixed-distributed e-Keggin structural polyanion capped by four Co(dien) fragments with the main group element P occupying the center site. These results were further confirmed by energy-dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Thermogravimetry (TG) and X-ray photoelectron spectroscopy (XPS) analyses.
Polyoxometalates(POMs) with Cd-coordination complexes acting as supporting units are rarely reported. The linkage of the supporting units with inorganic building block(polyanion) is generally established on terminal O-atoms, but scarcely via bridging O-atoms. By introducing liquid small organic molecule(pyridine, C5NH5) as assistant "structure-directing agent", we obtained a novel organic-inorganic hybrid polytungstate,(Hpy)4[Cd(phen)2(P2W18O62)]·nH2O(1, n ≈ 3, py = pyridine, phen = 1,10-phenanthroline), under hydrothermal conditions. The single-crystal X-ray diffraction analysis shows that 1 is the first compound containing an asymmetric heteropolyanion, [Cd(phen)2(P2W18O62)]4–, a Wells-Dawson-type polyanion monosupported by Cd-coordination complex via di-bridging O-atoms.