This paper presents a pressure observer based adaptive robust controller (POARC) for posture trajectory tracking of a parallel manipulator driven by three pneumatic muscles without pressure sensors. Due to model errors of the static forces and friction forces of pneumatic muscles, simplified average flow rate characteristics of valves, unknown disturbances of entire system, and unmeasured pressures, there exist rather severe parametric uncertainties, nonlinear uncertainties and dynamic uncertainties in modeling of the parallel manipulator. A nonlinear pressure observer is constructed to estimate unknown pressures on the basis of a single-input-single-output (SISO) decoupling model that is simplified from the actual multiple-input-multiple-output (MIMO) coupling model of the parallel manipulator. Then, an adaptive robust controller integrated with the pressure observer is developed to accomplish high precision posture trajectory tracking of the parallel manipulator. The experimental results indicate that the system with the proposed POARC not only achieves good control accuracy and smooth movement but also maintains robustness to disturbances.
When adaptive robust control(ARC) strategy based on backstepping design is applied in pneumatic servo control, accurate pressure tracking in motion is especially necessary for both force and position trajectories tracking ofrodless pneumatic cylinders, and therefore an adaptive robust pressure controller is developed in this paper to improve the tracking accuracy of pressure trajectory in the chamber when the pneumatic cylinder is moving. In the proposed adaptive robust pressure controller, off-line fitting of the orifice area and on-line parameter estimation of the flow coefficient are utilized to have improved model compensation, and meanwhile robust feedback and Kalman filter are used to have strong robustness against uncertain nonlinearities, parameter fluctuations and noise. Research results demonstrate that the adaptive robust pressure controller could not only track various pressure trajectories accurately even when the pneumatic cylinder is moving, but also obtain very smooth control input, which indicates the effectiveness of adaptive model compensation. Especially when a step pressure trajectory is tracked under the condition of the movement of a rodless pneumatic cylinder, maximum tracking error of ARC is 4.46 kPa and average tracking error is 0.99 kPa, and steady-state error of ARC could achieve 0.84 kPa, which is very close to the measurement accuracy of pressure transducer.
A new parameter estimation algorithm is proposed for parametric identification of a parallel manipulator driven by pneumatic muscles with redundancy. Due to the special physical properties of the parallel manipulator studied, the regression model for parametric identification is characterized by multieollinearity, which will result in unreliable and inaccurate parameter estimations with large eovarianee if the conventional parameter estimation algorithm based on single error minimizing criterion is used. To improve the quality of parameter estimation and achieve high precise posture trajectory tracking control of the parallel manipulator, a new parameter estimation algorithm based on composite error minimizing criterion is developed in need of theoretical contractive forces of pneumatic muscles. The experimental results indicate that the proposed algorithm integrated with adaptive robust control could provide reliable parametric identification and greatly enhance the control accuracy in the trajectory tracking control of the parallel manipulator, and that the variation of known theoretical contractive forces of pneumatic muscles has slight influence on the control performance.
High-accuracy motion trajectory tracking control of a pneumatic cylinder driven by a proportional directional control valve was considered. A mathematical model of the system was developed firstly. Due to the time-varying friction force in the cylinder, unmodeled dynamics, and unknown disturbances, there exist large extent of parametric uncertainties and rather severe uncertain nonlinearities in the pneumatic system. To deal with these uncertainties effectively, an adaptive robust controller was constructed in this work. The proposed controller employs on-line recursive least squares estimation(RLSE) to reduce the extent of parametric uncertainties, and utilizes the sliding mode control method to attenuate the effects of parameter estimation errors, unmodeled dynamics and disturbances. Therefore, a prescribed motion tracking transient performance and final tracking accuracy can be guaranteed. Since the system model uncertainties are unmatched, the recursive backstepping design technology was applied. In order to solve the conflicts between the sliding mode control design and the adaptive control design, the projection mapping was used to condition the RLSE algorithm so that the parameter estimates are kept within a known bounded convex set. Extensive experimental results were presented to illustrate the excellent achievable performance of the proposed controller and performance robustness to the load variation and sudden disturbance.
The system considered in this work consists of a cylinder which is controlled by a pair of three-way servo valves rather than a four-way one.Therefore,the cylinder output stiffness is independently controllable of the output force.A discontinuous projection based adaptive robust controller (ARC) was constructed to achieve high-accuracy output force trajectory tracking for the system.In ARC,on-line parameter adaptation method was adopted to reduce the extent of parametric uncertainties due to the variation of friction parameters,and sliding mode control method was utilized to attenuate the effects of parameter estimation errors,unmodelled dynamics and disturbance.Furthermore,output stiffness maximization/minimization was introduced to fulfill the requirement of many robotic applications.Extensive experimental results were presented to illustrate the effectiveness and the achievable performance of the proposed scheme.For tracking a 0.5 Hz sinusoidal trajectory,maximum tracking error is 4.1 N and average tracking error is 2.2 N.Meanwhile,the output stiffness can be made and maintained near its maximum/minimum.