Detecting the moving vehicles in jittering traffic scenes is a very difficult problem because of the complex environment.Only by the color features of the pixel or only by the texture features of image cannot establish a suitable background model for the moving vehicles. In order to solve this problem, the Gaussian pyramid layered algorithm is proposed, combining with the advantages of the Codebook algorithm and the Local binary patterns(LBP) algorithm. Firstly, the image pyramid is established to eliminate the noises generated by the camera shake. Then, codebook model and LBP model are constructed on the low-resolution level and the high-resolution level of Gaussian pyramid, respectively. At last, the final test results are obtained through a set of operations according to the spatial relations of pixels. The experimental results show that this algorithm can not only eliminate the noises effectively, but also save the calculating time with high detection sensitivity and high detection accuracy.
Recently, a genuine six-qubit entangled state Isix) has been proposed [Chen P X, et al. Phys Rev A, 2006, 74: 032324]. This state does not belong to the well-known three types of multipartite entangled states, i.e., Greenberger-Home-Zeilinger (GHZ) state, W state, and linear cluster state. This state has many potential applications in quantum information processing. We pro- pose a scheme for generating such a genuine six-qubit entangled state for trapped ions in thermal motion. The scheme is insen- sitive to both the initial motional state and heating.
In order to overcome the disadvantages of low accuracy rate, high complexity and poor robustness to image noise in many traditional algorithms of cloud image detection, this paper proposed a novel algorithm on the basis of Markov Random Field (MRF) modeling. This paper first defined algorithm model and derived the core factors affecting the performance of the algorithm, and then, the solving of this algorithm was obtained by the use of Belief Propagation (BP) algorithm and Iterated Conditional Modes (ICM) algorithm. Finally, experiments indicate that this algorithm for the cloud image detection has higher average accuracy rate which is about 98.76% and the average result can also reach 96.92% for different type of image noise.
Using the first-principles calculations based on density functional theory(DFT),the structure stability,electronic and some optical properties of C and N doped cubic ZrO2(c-ZrO2) in 24-atom systems were investigated.It is found from the formation energies calculations that N ions are easier to be doped into c-ZrO2 than C ions.The electronic structure results show that Zr8O15C and Zr8O15N systems are semiconductors with the band gap of 2.3 eV and 2.8 eV,respectively,which are lower than that of the pure ZrO2(3.349 eV).And optical properties results depict that anion doping,especially C adding,can enhance the static dielectric function,visible and ultraviolet light absorption and reflecting ability of c-ZrO2 crystal.