Tensile properties with different thermoforming conditions and deformation mechanism at thermoforming temperatures of automotive needlepunched carpets made up of three layers of different materials were reported.Investigations on the tensile properties were performed as a function of thermoforming temperature,extensile speed and fiber orientation based on an orthogonal experiment design.The experimental results show that the automotive carpets are rate-dependent anisotropic one and very sensitive to the forming temperature.The tensile properties are strongly depended on the forming temperature when compared with the extensile speed and the fiber orientation.Experiments only varying with the temperature were performed because of the dominative effect of the temperature.Different deformation performances were observed with different temperatures.Deformation mechanisms at the thermoforming temperatures were presented to explain the nonlinear trend of the ultimate elongation with the temperatures based on the combination of the experimental observations and the corresponding polymer theories.
Tensile properties of automotive needlepunched carpets made up of two layers of different materials (a fabric layer and a foam layer) in their thermoforming temperatures ranges with or without heat dispersion were discussed. Effects of forming temperature, extensile speed and fiber orientation on the tensile properties were studied based on an orthogonal experiment design. The experimental results show that automotive carpets are rate-dependent anisotropic materials and more strongly depend on forming temperature than the extensile speed and fiber orientation. Furthermore, contributions of the fabric layer and the foam layer to the overall tensile performance were investigated by comparing the tensile results of single fabric layer with those of the overall carpet. Both the fabric layer and the foam layer show positive effects on the overall tensile strength which is the combination of the two layers' tensile strength and independent of temperature, extensile speed and fiber orientation On the other hand, their influences on the overall deformation are relatively complicated.