Quantum steganography that utilizes the quantum mechanical effect to achieve the purpose of information hiding is a popular topic of quantum information. Recently, E1 Allati et al. proposed a new quantum steganography using the GHZ4 state. Since all of the 8 groups of unitary transformations used in the secret message encoding rule change the GHZ4 state into 6 instead of 8 different quantum states when the global phase is not considered, we point out that a 2-bit instead of a 3-bit secret message can be encoded by one group of the given unitary transformations. To encode a 3-bit secret message by performing a group of unitary transformations on the GHZ4 state, we give another 8 groups of unitary transformations that can change the GHZ4 state into 8 different quantum states. Due to the symmetry of the GHZ4 state, all the possible 16 groups of unitary transformations change the GHZ4 state into 8 different quantum states, so the improved protocol achieves a high efficiency.
In this paper,we first propose a hidden rule among the secure message,the initial tensor product of two Bell states and the final tensor product when respectively applying local unitary transformations to the first particle of the two initial Bell states,and then present a high-efficiency quantum steganography protocol under the control of the hidden rule.In the proposed quantum steganography scheme,a hidden channel is established to transfer a secret message within any quantum secure direct communication(QSDC) scheme that is based on 2-level quantum states and unitary transformations.The secret message hiding/unhiding process is linked with the QSDC process only by unitary transformations.To accurately describe the capacity of a steganography scheme,a quantitative measure,named embedding efficiency,is introduced in this paper.The performance analysis shows that the proposed steganography scheme achieves a high efficiency as well as a good imperceptibility.Moreover,it is shown that this scheme can resist all serious attacks including the intercept-resend attack,measurement-resend attack,auxiliary particle attack and even the Denial of Service attack.To improve the efficiency of the proposed scheme,the hidden rule is extended based on the tensor product of multiple Bell states.
Partial least squares(PLS) regression is an important linear regression method that efficiently addresses the multiple correlation problem by combining principal component analysis and multiple regression. In this paper, we present a quantum partial least squares(QPLS) regression algorithm. To solve the high time complexity of the PLS regression, we design a quantum eigenvector search method to speed up principal components and regression parameters construction. Meanwhile, we give a density matrix product method to avoid multiple access to quantum random access memory(QRAM)during building residual matrices. The time and space complexities of the QPLS regression are logarithmic in the independent variable dimension n, the dependent variable dimension w, and the number of variables m. This algorithm achieves exponential speed-ups over the PLS regression on n, m, and w. In addition, the QPLS regression inspires us to explore more potential quantum machine learning applications in future works.
在基于失真不可感知的控制模型(maximize payload under imperceptive,MPUI)下,研究了空域图像的最大水印容量。发现最大水印容量不仅与嵌入强度有关,而且与图像尺寸大小、复杂度、视觉敏感度等因素相关。在理论上推导了最大水印容量与图像大小、嵌入强度的关系,并采用多元回归分析方法研究了图像复杂度、视觉敏感度与嵌入率的关系模型。综合这些内外因素,借助于主客观评价体系,推算出水印嵌入容量的估算方法,并在实验中验证了该估算方法的有效性。
Recently,some blind quantum signature(BQS) protocols have been proposed.But the previous schemes have security and efficiency problems.Based on the entangled Greenberger-Horne-Zeilinger(GHZ) states,a new weak BQS protocol is proposed.Compared with some existing schemes,our protocol has 100% efficiency.Besides,the protocol is simple and easy to implement.The security of the protocol is guaranteed by the correlation of the GHZ particles held by each participant.In our protocol,the signatory is kept blind from the content of the message.According to the security analysis,the signatory cannot disavowal his/her signature while the signature cannot be forged by others.
In order to estimate maximum steganographic capacity of discrete cosine transform(DCT) domain in JPEG image, this paper presents a method based on the maximize capacity under undetectable model(MCUU). We analyze the relation between steganographic capacity and affecting factors(image size, steganography operator, loading band, embedding intensity and image complexity). Then we design a steganography analyzer architecture and a steganographic algorithm which can dynamically increase the steganographic capacity. Compared with other methods of embedding capacity estimation in DCT domain, the proposed methods utilizes general steganalysis methods rather than one specific steganalysis technique and takes five essential factors into account, which improves the commonality and comprehensiveness of capacity estimation, respectively. The experimental results show that steganographic capacity for quantization index modulation(QIM) is almost twice that of spread spectrum(SS) based on MCUU model.
MAO JiafaHUANG YanhongNIU XinxinXIAO GangZHU LinanSHENG Weiguo
In this paper,we first re-examine the previous protocol of controlled quantum secure direct communication of Zhang et al.’s scheme,which was found insecure under two kinds of attacks,fake entangled particles attack and disentanglement attack.Then,by changing the party of the preparation of cluster states and using unitary operations,we present an improved protocol which can avoid these two kinds of attacks.Moreover,the protocol is proposed using the three-qubit partially entangled set of states.It is more efficient by only using three particles rather than four or even more to transmit one bit secret information.Given our using state is much easier to prepare for multiqubit states and our protocol needs less measurement resource,it makes this protocol more convenient from an applied point of view.
A universal entangler is a very powerful fault-tolerant entangling device for generating quantum entanglements from any joint states. Our paper aims to address the construction of universal entanglers. We prove that universal entanglers may be obtained from random unitary gates according to the Harr measure. The success probability is close to 1 for large system spaces. This result represents the typical density of entanglement subspaces in large state spaces. It also partially solves an open problem of universal bipartite entanglers and is explained by some experiment simulations.
WANG FengLUO MingXingCHEN XiuBoYANG YiXianWANG XiaoJun