Selection for phosphorus (P)-efficient genotypes and investigation of physiological mechanisms for P-use efficiency in maize has mainly been conducted at the seedling stage under controlled greenhouse conditions. Few studies have analyzed characteristics of plant growth and yield formation in response to low-P stress over the whore growth period under field conditions. In the present study, two maize inbred lines with contrasting yield performances under low-P stress in the field were used to compare plant growth, P uptake and translocation, and yield formation. Phosphorus accumulation in the P-efficient line 154 was similar to that of line 153 under high-P. Under low-P, however, P uptake in line 154 was three times greater than that in line 153. Correspondingly, P-efficient line 154 had a significantly higher yield than P-inefficient line 153 under low-P conditions (Olsen-P=1.60 mg kg-1), but not under high-P conditions (Olsen-P=14.98 mg kg-1). The yield difference was mainly due to differences in the number of ears per m2, that is, P-efficient line 154 formed many more ears under low-P conditions than P-inefficient line 153. Ear abortion rate was 53% in the P-inefficient line 153, while in line 154, it was only 30%. Low-P stress reduced leaf appearance, and delayed anthesis and the silking stage, but increased the anthesis-silking interval (ASI) to a similar extent in both lines. The maximum leaf area per plant at silking stage was higher in P-efficient line 154 than in P-inefficient line 153 under both P conditions. It is concluded that low-P stress causes intense intraspecific competition for limited P resources in the field condition which gives rise to plant-to- plant non-uniformity, resulting in a higher proportion of barren plants. As soon as an ear was formed in the plant, P in the plant is efficiently reutilized for kernel development.
Breeding high-yielding and nutrient-efficient cultivars is one strategy to simultaneously resolve the problems of food security,resource shortage,and environmental pollution.However,the potential increased yield and reduction in fertilizer input achievable by using high-yielding and nutrient-efficient cultivars is unclear.In the present study,we evaluated the yield and nitrogen use efficiency(NUE) of 40 commercial maize hybrids at five locations in North and Northeast China in 2008 and 2009.The effect of interaction between genotype and nitrogen(N) input on maize yield was significant when the yield reduction under low-N treatment was 25%-60%.Based on the average yields achieved with high or low N application,the tested cultivars were classified into four types based on their NUE:efficient-efficient(EE) were efficient under both low and high N inputs,high-N efficient(HNE) under only high N input,low-N efficient(LNE) under only low N input,and nonefficient-nonefficient under neither low nor high N inputs.Under high N application,EE and HNE cultivars could potentially increase maize yield by 8%-10% and reduce N input by 16%-21%.Under low N application,LNE cultivars could potentially increase maize yield by 12%.We concluded that breeding for N-efficient cultivars is a feasible strategy to increase maize yield and/or reduce N input.
Maize(Zea mays L.) root morphology exhibits a high degree of phenotypic plasticity to nitrogen(N) de ficiency,but the underlying genetic architecture remains to be investigated Using an advanced BC_4F_3 population,we investigated the root growth plasticity under two contrasted N levels and identi fied the quantitative trait loci(QTLs) with QTL-environment(Q×E)interaction effects. Principal components analysis(PCA) on changes of root traits to N de ficiency(D LN-HN) showed that root length and biomass contributed for 45.8% in the same magnitude and direction on the first PC,while root traits scattered highly on PC_2 and PC_3. Hierarchical cluster analysis on traits for D LN-HN further assigned the BC_4F_3 lines into six groups,in which the special phenotypic responses to N de ficiency was presented These results revealed the complicated root plasticity of maize in response to N de ficiency that can be caused by genotype environment(G×E) interactions. Furthermore,QTL mapping using a multi-environment analysis identi fied 35 QTLs for root traits. Nine of these QTLs exhibited signi ficant Q×E interaction effects. Taken together,our findings contribute to understanding the phenotypic and genotypic pattern of root plasticity to N de ficiency,which will be useful for developing maize tolerance cultivars to N de ficiency.