We have investigated the influence of Ag nanorod radius(r)on the resonant modes of a two-dimensional plasmonic photonic crystal(PPC)with dipole sources embedded into the central vacancy area,using finite-difference time-domain methods.Both the localized surface plasmon(LSP)mode of individual Ag nanorods and the resonant cavity mode of PPC are found to vary as a function of r.The resonant cavity mode is strongly enhanced as r is increased,while the LSP signal will eventually become no longer discernable in the Fourier spectrum of the time-evolved field.An optimized condition for the nanocavity field enhancement is found for a given PPC periodicity(e.g.d=375 nm)with the critical nanorod radius rc=d/3.At this point the resonant cavity mode has the strongest field enhancement,best field confinement and largest Q-factor.We attribute this to competition between the blocking of cavity confined light to radiate out when the cavity resonant frequency falls inside the opened photonic stopband as r reaches rc,and the transfer of cavity mode energy to inter-particle plasmons when r is further increased.
Transition-metal-salt-mediated radical reactions of fullerenes have attracted extensive attention as a new and important method for fullerene functionalization. The application of relatively cheap and easily available ferric perchlorate (Fe(ClO 4 ) 3 ) to the synthesis of [60]fullerene (C 60 ) has demonstrated remarkable advantages and afforded a series of novel fullerene derivatives. In this review we present our recent progress in this area and summarize the reactions of C 60 with malonate esters, β-keto esters, nitriles, aldehydes/ketones, and arylboronic acids in the presence of Fe(ClO 4 ) 3 to afford the C 60-fused disubstituted lactones, C 60-fused hemiketal, C 60-fused dihydrofuran, C 60-fused oxazoles, C 60-fused 1,3-dioxolanes, and fullerenyl boronic esters. The possible reaction mechanisms for the above-mentioned reactions are also described in detail.
We have investigated the self-assembly and light emission properties of organic α- sexithiophene (α-6T) molecules on Ag(100) under different coverage by scanning tunneling microscopy (STM). At very low coverage, the α-6T molecules form a unique enantiomer by grouping four molecules into a windmill supermolecular structure. As the coverage is increased,α-6T molecules tend to pack side by side into a denser stripe structure. Further increase of the coverage will lead to the layer-by-layer growth of molecules on Ag(100) with the lower-layer stripe pattern serving as a template. Molecular fluorescence for α-6T molecules on Ag(100) at a coverage of five monolayers has been detected by light excitations, which indicates a well decoupled electronic states for the top-layer α-6T molecules. However, the STM induced luminescent spectra for the same sample reveal only plasmonic-like emission. The absence of intramolecular fluorescence in this case suggests that the electronic decoupling is not a sufficient condition for generating photon emission from molecules. For intramolecular fluorescence to occur, the orientation of the dynamic dipole moment of molecules and the energy-level alignment at the molecule-metal interface are also important so that molecules can be effectively excited through efficient dipolar coupling with local plasmons and by injecting holes into the molecules.