Pool boiling of saturated water on a plain Ti surface and surfaces covered with vertically-oriented TiO2 nanotube arrays(NTAs) has been studied.The technique of potentiostatic anodization using non-aqueous electrolytes was adopted to fabricate three types of TiO2 NTAs distinguished by their anodization time.Compared to the bare Ti surface,the incipient boiling wall superheat on the TiO2 NTAs was decreased by 11 K.Both the critical heat flux and heat transfer coefficient of pool boiling on the TiO2 NTAs were higher than those from boiling on a bare Ti surface.The measured maximum critical heat flux and heat transfer coefficient values were 186.7 W/cm2 and 6.22 W/cm2K,respectively.Different performances for the enhancement of heat transfer by the three types of TiO2 NTAs were attributed to the different degrees of deformation in the nanostructure during boiling.Long-term performance of the nanomaterial-coated surfaces for enhanced pool boiling showed degradation of the TiO2 NTAs prepared with an anodization time of 3 hours.
A multi-quantum barrier structure is employed as the electron blocking layer of light-emitting diodes to enhance their performance.Using the non-isothermal multi-physics-field coupling model,the internal quantum efficiency,internal heat source characteristics,spectrum characteristics,and photoelectric conversion efficiency of light-emitting diodes are analyzed systematically.The simulation results show that:introducing multi-quantum barrier electron blocking layer structure significantly increases the internal quantum efficiency and photoelectric conversion efficiency of light-emitting diodes and the intensity of spectrum,and strongly ensures the thermal and light output stability of light-emitting diodes.These results are attributed to the modified energy band diagrams of the electron blocking layer which are responsible for the decreased electron leakage and enhanced carrier concentration in the active region.