In the paper, by use of the monthly mean temperature data of 12 stations in the vicinity of Antarctic Peninsula, the temperature series during 1903 - 2000 is founded and the interdecadal oscillation of the temperature are discussed. The results indicate that 1) There are three jumps during 1919 - 1923, 1947 - 1953 and 1976 - 1982 in recent hundred years and the stable climate step between two jump points lasted about 30 years. 2) Annual mean temperature is increased by 0. 730℃ in an echelon during 1903 -2000, the warming extent is dissimilarity in each season, the maximum of warming is in the winter and the minimum of warming is in summer. 3) The ice decline trend is presented in the index of Ice concentration in the vicinity sea of Antarctic Peninsula, which shows a -0. 2053/10a drop, and the decrease trend of the ice concentration index in summer half year (Dee-May) is found much more obviously than that in winter half year (Jun-Nov). 4) There is better negative relationship between the temperature and the Ice concentration index in Antarctic Peninsula and its vicinity sea, which correlation coefficient of is exceed the significance level of 5% in summer, autumn and annual.
Analysis of sensible heat flux ( Qh ), latent heat flux ( Qe ), Richardson number (Ri) ,bulk transport coefficient (Cd) and katabatic windsare presented by using the meteorological data in the near surface layer from an automatic weather station (AWS) in Princess Elizabeth Land, East Antarctica ice sheet and the data of corresponding period at Zhongshan station in 2002. It shows that annual mean air temperature at LGB69 is -25.6℃, which is 16.4℃ lower than that at Zhongshan, where the elevation is lower and located on the coast. The temperature lapse rate is about 1.0℃/110 m for the initial from coast to inland. The turbulence heat flux at LGB69 displays obvious seasonal variations with the average sensible heat flux -17.9 W/m^2 and latent heat flux -0.9 W/m^2. The intensity (Qh + Qe ) of coolling source is - 18.8 W/m^2 meaning the snow surface layer obtains heat from atmosphere. The near surface atmosphere is near-neutral stratified with bulk transport coefficients (Cd) around 2.8 ×10^-3 ,and it is near constant when the wind speed higher than 8 m/s. The speed and the frequency of easterly Katabatic winds at LGB69 were higher than that at Zhongshan Station.