您的位置: 专家智库 > >

国家自然科学基金(90503006)

作品数:9 被引量:20H指数:3
相关作者:高原焦小玉楼森岳更多>>
相关机构:复旦大学上海交通大学宁波大学更多>>
发文基金:国家自然科学基金国家重点基础研究发展计划国家教育部博士点基金更多>>
相关领域:理学自然科学总论更多>>

文献类型

  • 9篇中文期刊文章

领域

  • 8篇理学
  • 1篇自然科学总论

主题

  • 3篇APPROX...
  • 2篇SYMMET...
  • 2篇DIMENS...
  • 2篇HOMOTO...
  • 2篇REDUCT...
  • 1篇NONLIN...
  • 1篇PERTUR...
  • 1篇REDUCT...
  • 1篇SHALLO...
  • 1篇SOLUTI...
  • 1篇SOLVIN...
  • 1篇SYMMET...
  • 1篇SYMMET...
  • 1篇TH
  • 1篇TRY
  • 1篇VARIAB...
  • 1篇VIRASO...
  • 1篇VORTIC...
  • 1篇WATER_...
  • 1篇ABOUT

机构

  • 1篇复旦大学
  • 1篇宁波大学
  • 1篇上海交通大学

作者

  • 1篇楼森岳
  • 1篇焦小玉
  • 1篇高原

传媒

  • 6篇Chines...
  • 1篇Acta M...
  • 1篇中国科学(G...
  • 1篇Scienc...

年份

  • 2篇2010
  • 5篇2009
  • 1篇2008
  • 1篇2007
9 条 记 录,以下是 1-9
排序方式:
Infinite series symmetry reduction solutions to the modified KdV-Burgers equation被引量:3
2009年
From the point of view of approximate symmetry, the modified Korteweg-de Vries-Burgers (mKdV-Burgers) equation with weak dissipation is investigated. The symmetry of a system of the corresponding partial differential equations which approximate the perturbed mKdV-Burgers equation is constructed and the corresponding general approximate symmetry reduction is derived; thereby infinite series solutions and general formulae can be obtained. The obtained result shows that the zero-order similarity solution to the mKdV-Burgers equation satisfies the Painleve II equation. Also, at the level of travelling wave reduction, the general solution formulae are given for any travelling wave solution of an unperturbed mKdV equation. As an illustrative example, when the zero-order tanh profile solution is chosen as an initial approximate solution, physically approximate similarity solutions are obtained recursively under the appropriate choice of parameters occurring during computation.
姚若侠焦小玉楼森岳
Some discussions about method for solving the variable separating nonlinear models
2010年
Through analysing the exact solution of some nonlinear models, the role of the variable separating method in solving nonlinear equations is discussed. We find that rich solution structures of some special fields of these equations come from the nonzero seed solution. However, these nonzero seed solutions is likely to result in the divergent phenomena for the other field component of the same equation. The convergence and the signification of all field components should be discussed when someone solves the nonlinear equation using the variable separating method.
阮航宇
Approximate direct reduction method:infinite series reductions to the perturbed mKdV equation
2009年
The approximate direct reduction method is applied to the perturbed mKdV equation with weak fourth order dispersion and weak dissipation. The similarity reduction solutions of different orders conform to formal coherence, accounting for infinite series reduction solutions to the original equation and general formulas of similarity reduction equations. Painleve Ⅱ type equations, hyperbolic secant and Jacobi elliptic function solutions are obtained for zeroorder similarity reduction equations. Higher order similarity reduction equations are linear variable coefficient ordinary differential equations.
焦小玉楼森岳
同伦近似对称法:六阶Boussinesq方程的同伦级数解被引量:5
2009年
提出了用以处理非线性问题的同伦近似对称法,并利用该方法研究流体动力学中的六阶Boussinesq方程.各阶相似约化解和各阶相似约化方程均可以写出通式,从而导出相应的同伦级数解.零阶相似约化方程等价于Painlevé IV型方程或Weierstrass椭圆方程,高阶相似解可以通过解线性变系数常微分方程得到.辅助参数具有调节同伦级数解的收敛性的作用.由近似对称法得到的级数解和各阶相似约化方程均能够由同伦近似对称法重新得到.
焦小玉高原楼森岳
Nonlinear excitations and“peakons”of a(2+1)-dimensional generalized Broer-Kaup system被引量:2
2007年
Shallow water waves and a host of long wave phenomena are commonly investigated by various models of nonlinear evolution equations. Examples include the Korteweg-de Vries, the Camassa-Holm, and the Whitham-Broer-Kaup (WBK) equations. Here a generalized WBK system is studied via the multi-linear variable separation approach. A special class of wave profiles with discontinuous derivatives ("peakons") is developed. Peakons of various features, e.g. periodic, pulsating or fractal, are investigated and interactions of such entities are studied.
X. Y. TangK. W. ChowS. Y. Lou
Approximate homotopy symmetry method:Homotopy series solutions to the sixth-order Boussinesq equation被引量:10
2009年
An approximate homotopy symmetry method for nonlinear problems is proposed and applied to the sixth-order Boussinesq equation,which arises from fluid dynamics.We summarize the general formulas for similarity reduction solutions and similarity reduction equations of different orders,educing the related homotopy series solutions.Zero-order similarity reduction equations are equivalent to the Painlevé IV type equation or Weierstrass elliptic equation.Higher order similarity solutions can be obtained by solving linear variable coefficients ordinary differential equations.The auxiliary parameter has an effect on the convergence of homotopy series solutions.Series solutions and similarity reduction equations from the approximate symmetry method can be retrieved from the approximate homotopy symmetry method.
JIAO XiaoYu1,GAO Yuan1 & LOU SenYue1,2,3 1 Department of Physics,Shanghai Jiao Tong University,Shanghai 200240,China
关键词:APPROXIMATEHOMOTOPYSYMMETRYBOUSSINESQEQUATIONHOMOTOPY
Approximate homotopy similarity reduction for the generalized Kawahara equation via Lie symmetry method and direct method被引量:1
2010年
This paper studies the generalized Kawahara equation in terms of the approximate homotopy symmetry method and the approximate homotopy direct method. Using both methods it obtains the similarity reduction solutions and similarity reduction equations of different orders, showing that the approximate homotopy direct method yields more general approximate similarity reductions than the approximate homotopy symmetry method. The homotopy series solutions to the generalized Kawahara equation are consequently derived.
刘希忠
Variable coefficient nonlinear systems derived from an atmospheric dynamical system
2009年
Variable coefficient nonlinear systems, the Korteweg de Vries (KdV), the modified KdV (mKdV) and the nonlinear Schrǒdinger (NLS) type equations, are derived from the nonlinear inviscid barotropic nondivergent vorticity equation in a beta-plane by means of the multi-scale expansion method in two different ways, with and without the so-called y-average trick. The non-auto-Bǎcklund transformations are found to transform the derived variable coefficient equations to the corresponding standard KdV, mKdV and NLS equations. Thus, many possible exact solutions can be obtained by taking advantage of the known solutions of these standard equations. Further, many approximate solutions of the original model are ready to be yielded which might be applied to explain some real atmospheric phenomena, such as atmospheric blocking episodes.
唐晓艳高原黄菲楼森岳
Kac-Moody-Virasoro symmetry algebra of a (2+1)-dimensional bilinear system被引量:1
2008年
Based on some known facts of integrable models, this paper proposes a new (2+1)-dimensional bilinear model equation. By virtue of the formal series symmetry approach, the new model is proved to be integrable because of the existence of the higher order symmetries. The Lie point symmetries of the model constitute an infinite dimensional Kac- Moody Virasoro symmetry algebra. Making use of the infinite Lie point symmetries, the possible symmetry reductions of the model are also studied
李金花楼森岳
共1页<1>
聚类工具0