分别从分子运动论及连续流理论出发,对体积力驱动的微尺度平面泊肃叶(Poiseuille)流的横向分布特征进行了分析.分子水平模拟采用直接模拟蒙特卡罗(direct simulation Monte Carlo,DSMC)方法;连续流理论则主要考察了伯内特(Burnett)及超伯内特(Super--Burnett)等高阶连续模型,在平行流假设下,获得一组高阶非线性常微分方程,补充完整的边界条件,并应用龙格--库塔(Runge--Kutta)方法求解.结果表明,即使对于过渡领域流动,高阶连续模型可以给出与DSMC结果完全相符的压力分布,而速度分布当努森(Knudsen)数约为0.2时即在壁面开始出现偏差;对于温度的横向分布,伯内特模型回复到纳维--斯托克斯(Navier--Stokes)水平,不能得到与DSMC一致的双峰结构,而超伯内特模型在滑移流动领域与DSMC定性相符,在过渡领域却仅能正确预测主流区温度分布,壁面附近差异明显;横向热流与纳维--斯托克斯模型预测接近,但机理上存在本质区别.本文结果提示选用连续模型时,不仅要根据流动参数来判断,还可以根据所关注的物理量来进行调整,适度扩大连续模型的适用范围.但即使采用高阶本构关系,连续模型仍然不能完全描述壁面附近区域的非平衡效应(如努森层效应),这是试图扩大连续模型适用范围时必然会遇到的困难.