By using first-principles simulations based on time-dependent density functional theory,the chemical reaction of an HCl molecule encapsulated in C60induced by femtosecond laser pulses is observed.The H atom starts to leave the Cl atom and is reflected by the C60wall.The coherent nuclear dynamic behaviors of bond breakage and recombination of the HCl molecule occurring in both polarized parallel and perpendicular to the H–Cl bond axis are investigated.The radial oscillation is also found in the two polarization directions of the laser pulse.The relaxation time of the H–Cl bond lengths in transverse polarization is slow in comparison with that in longitudinal polarization.Those results are important for studying the dynamics of the chemical bond at an atomic level.
We investigate the adsorptions of Ar on Al (111) and Ir (111) surfaces at the four high symmetry sites, i.e., top, bridge, fcc- and hcp-hollow sites at the coverage of 0.25 monolayer (ML) using the density functional theory within the generalized gradient approximation of Perdew, Burke and Ernzerhof functions. The geometric structures, the binding energies, the electronic properties of argon atoms adsorbed on Al (111) and Ir (111) surfaces, the difference in electron density between on the Al (111) surface and on the Ir (111) surface and the total density of states are calculated. Our studies indicate that the most stable adsorption site of Ar on the Al (111) surface is found to be the fcc-hollow site for the (2 x 2) structure. The corresponding binding energy of an argon atom at this site is 0.538 eV/Ar atom at a coverage of 0.25 ML. For the Ar adsorption on Ir (111) surface at the same coverage, the most favourable site is the hcp-hollow site, with a corresponding binding energy of 0.493 eV. The total density of states (TDOS) is analysed for Ar adsorption on Al (111) surface and it is concluded that the adsorption behaviour is dominated by the interaction between 3s, 3p orbits of Ar atom and the 3p orbit of the base Al metal and the formation of sp hybrid orbital. For Ar adsorption on Ir (111) surface, the conclusion is that the main interaction in the process of Ar adsorption on Ir (111) surface comes from the 3s and 3p orbits of argon atom and 5d orbit of Ir atom.
A theoretical study on the structural and electronic properties of Li2Si3O7 is performed by using density functional theory(DFT) method.The molecular structure of the crystal and two kinds of [SiO4]-tetrahedra with different number of non-bridging oxygen(Qn) are analyzed.The structure of crystal Li2Si3O7 can be considered as a framework of corner-sharing tetrahedra.From the band structure(BS),total density of state(TDOS) and projected density of state(PDOS) of the crystal,the structures of Q3,Q4,and LiO4 tetrahedra as well as their bonding characters are presented.For lithium trisilicate,we find the bond cation-NBO(nonbridging oxygen and oxygen atoms bonding to one silicon atom only) is stronger than the bond cation-BO(bridging oxygen and oxygen atoms bonding to two silicon atoms).By analyzing the ionicity of two different types of bonds of silicon-oxygen according to the Mulliken population analysis,we also find that the Si-NBO bonds have higher ionicity than Si-BO for crystalline lithium trisilicate,which agrees with other lithium silicates.
In the present paper we give a detailed report on the results of our first-principles investigations of Ar adsorptions at the four high symmetry sites on M (111) (M =Pd, Pt, Cu, and Rh) surfaces. Our studies indicate that the most stable adsorption sites of Ar on Pd (111) and Pt (111) surfaces are found to be the fcc-hollow sites. However, for Ar adsorptions on Cu (111) and Rh (111) surfaces, the most favorable site is the on-top site. The density of states (DOS) is analyzed for Ar adsorption on M (111) surfaces, and it is concluded that the adsorption behavior is dominated by the interaction between 3s, 3p orbits of Ar atoms and the d orbit of the base metal atoms.
On the basis of the structural and electronic properties of 14 different cyclic nitramine molecules, two types of formulas are employed to predict their electric spark sensitivity. One contains the minimum Mulliken charges of nitro group, the ratio of hydrogen to oxygen, and the ratio of carbon to oxygen; the other contains the lowest unoccupied molecular orbital energy, the ratio of hydrogen to oxygen, and the ratio of carbon to oxygen. Using these two types of formulas, we calculate the electric spark sensitivity of these 14 cyclic nitramine molecules, and compare them with the experimental data and previous theoretical values. And our investigations show that the former type of formula is better than the latter on predicting the electric spark sensitivity for cyclic nitramine molecules.
A new hydrogen storage route of 3D nanoporous sodium borohydride (NPSB) generated by removing special atoms is proposed in this work. Three different size pores of NPSB-1 (7), NPSB-2 (10) and NPSB-3 (14) are presented, and the hydrogen storage capacities of these NPSBs are simulated by employing a grand canonical Monte Carlo (GCMC) procedure for a temperature range of 77-298 K and a pressure range of 0.1-100 bar. The effects of pore diameter, temperature and pressure on the hydrogen adsorption have been examined. The results show that the adsorption of hydrogen decreases and increases with increasing temperature and hydrogen pressure, respectively. It also reflects that the hydrogen adsorption capacities at higher pressures are dependent on pore diameter, while independent of pore diameter at lower pressures.
Using density functional theory calculation based on the B3LYP method,we have studied the interactions of H2 molecules with alkali-metal organic complexes C6H6-nLin(n = 1~3),C6H5Na and C6H5K.A significant part of the electronic charge of M s orbital(Li 2s,Na 3s,K 4s) is donated to phenyl and is accommodated by H2 bonding orbital.For all the complexes considered,each bonded alkali-metal atom can adsorb up to five H2 in molecular form with the mean binding energy of 0.59,0.55 and 0.56 eV/H2 molecule for C6H6-nLin(n = 1~3),C6H5Na and C6H5K,respectively.The kinetic stability of these hydrogen-covered organometallic complexes is discussed in terms of energy gap between HOMO and LUMO.It is remarkable that these alkali-metal organic complexes can store up to 23.80 wt% hydrogen.Therefore,the complexes studied may be used as hydrogen storage materials.