Coupled map lattices are taken as examples to study the synchronisation of spatiotemporal chaotic systems. First, a generalised synchronisation of two coupled map lattices is realised through selecting an appropriate feedback function and appropriate range of feedback parameter. Based on this method we use the phase compression method to extend the range of the parameter. So, we integrate the feedback control method with the phase compression method to implement the generalised synchronisation and obtain an exact range of feedback parameter. This technique is simple to implement in practice. Numerical simulations show the effectiveness and the feasibility of the proposed program.
In this paper, the modified projective synchronization (MPS) of a fractional-order hyperchaotic system is inves- tigated. We design the response system corresponding to the drive system on the basis of projective synchronization theory, and determine the sufficient condition for the synchronization of the drive system and the response system based on fractional-order stability theory. The MPS of a fractional-order hyperchaotic system is achieved by transmitting a single variable. This scheme reduces the information transmission in order to achieve the synchronization, and extends the applicable scope of MPS. Numerical simulations further demonstrate the feasibility and the effectiveness of the proposed scheme.
Disturbance imposed on the chaotic systems is an effective way to maintain its chaotic good encryption features. This paper proposes a new perturbation method to the Tent map. First it divides the Tent map domain into 2N parts evenly and selects a particular part from them, then proliferates the Tent map mapping trajectory of this particular part, which can disturb the entire system disturbance. The mathematical analysis and simulated experimental results prove that the disturbed Tent map has uniform invariant distribution and can produce good cryptographic properties of pseudo-random sequence. These facts avoid the phenomenon of short-period caused by the computer's finite precision and reducing the sequence's dependence on the disturbance signal, such that effectively compensate for the digital chaotic system dynamics degradation.
This paper utilizes a spatial texture correlation and the intelligent classification algorithm (ICA) search strategy to speed up the encoding process and improve the bit rate for fractal image compression. Texture features is one of the most important properties for the representation of an image. Entropy and maximum entry from co-occurrence matrices are used for representing texture features in an image. For a range block, concerned domain blocks of neighbouring range blocks with similar texture features can be searched. In addition, domain blocks with similar texture features are searched in the ICA search process. Experiments show that in comparison with some typical methods, the proposed algorithm significantly speeds up the encoding process and achieves a higher compression ratio, with a slight diminution in the quality of the reconstructed image; in comparison with a spatial correlation scheme, the proposed scheme spends much less encoding time while the compression ratio and the quality of the reconstructed image are almost the same.
This paper proposes an efficient lossless image compression scheme for still images based on an adaptive arithmetic coding compression algorithm. The algorithm increases the image coding compression rate and ensures the quality of the decoded image combined with the adaptive probability model and predictive coding. The use of adaptive models for each encoded image block dynamically estimates the probability of the relevant image block. The decoded image block can accurately recover the encoded image according to the code book information. We adopt an adaptive arithmetic coding algorithm for image compression that greatly improves the image compression rate. The results show that it is an effective compression technology.
Based on the stability theory of the linear fractional order system, projective synchronization of a complex network is studied in the paper, and the coupling functions of the connected nodes are identified. With this method, the projective synchronization of the network with different fractional order chaos nodes can be achieved, besides, the number of the nodes does not affect the stability of the whole network. In the numerical simulations, the chaotic fractional order Lu system, Liu system and Coullet system are chosen as examples to show the effectiveness of the scheme.
Based on the stability theory of the fractional order system, the dynamic behaviours of a new fractional order system are investigated theoretically. The lowest order we found to have chaos in the new three-dimensional system is 2.46, and the period routes to chaos in the new fractional order system are also found. The effectiveness of our analysis results is further verified by numerical simulations and positive largest Lyapunov exponent. Furthermore, a nonlinear feedback controller is designed to achieve the generalized projective synchronization of the fractional order chaotic system, and its validity is proved by Laplace transformation theory.
In this paper, we analyse a new chaos-based cryptosystem with an embedded adaptive arithmetic coder, which was proposed by Li Heng-Jian and Zhang J S (Li H J and Zhang J S 2010 Chin. Phys. B 19 050508). Although this new method has a better compression performance than its original version, it is found that there are some problems with its security and decryption processes. In this paper, it is shown how to obtain a great deal of plain text from the cipher text without prior knowledge of the secret key. After discussing the security and decryption problems of the Li Heng-Jian et al. algorithm, we propose an improved chaos-based cryptosystem with an embedded adaptive arithmetic coder that is more secure.
Coupled map lattices (CMLs) are taken as examples to study the synchronization of spatiotemporal chaotic systems. In this paper, we use the nonlinear coupled method to implement the synchronization of two coupled map lattices. Through the appropriate separation of the linear term from the nonlinear term of the spatiotemporal chaotic system, we set the nonlinear term as the coupling function and then we can achieve the synchronization of two coupled map lattices. After that, we implement the secure communication of digital image using this synchronization method. Then, the discrete characteristics of the nonlinear coupling spatiotemporal chaos are applied to the discrete pixel of the digital image. After the synchronization of both the communication parties, the receiver can decrypt the original image. Numerical simulations show the effectiveness and the feasibility of the proposed program.
In this paper, an impulsive synchronisation scheme for a class of fractional-order hyperchaotic systems is proposed. The sufficient conditions of a class of integral-order hyperchaotic systems' impulsive synchronisation are illustrated. Furthermore, we apply the sufficient conditions to a class of fractional-order hyperchaotic systems and well achieve impulsive synchronisation of these fractional-order hyperchaotic systems, thereby extending the applicable scope of impulsive synchronisation. Numerical simulations further demonstrate the feasibility and effectiveness of the proposed scheme.