The phenomenon of discharge atomization occurs as hydraulic structures discharging,which influences the safety of power station,electrical equipment and produces environmental pollution.A series of physical model tests and feedback analysis are adapted to preliminarily study the scale effect of discharge atomization model by use of the field observation data of discharge atomization.The effect of Re and We numbers of flow on the atomization intensity is analyzed.A conversion relationship of atomization intensity between prototype and model results and the similarity criteria of the atomization range are developed. The conclusion is that the surface tension of discharge atomization model could be ignored when the Weber number is larger than 500.Some case studies are given by use of the similitude criteria of the atomization model.
WU ShiQiang 1,WU XiuFeng 1,2,ZHOU Hui 1,CHEN HuiLing 1,SHA HaiFei 1 & ZHOU Jie 1 1 State Key Laboratory of Hydrology-Water resources and Hydraulic Engineering,Nanjing Hydraulic Research Institute,Nanjing 210029,China
By combining the results of prototype observation of flood discharge atomization at the Wujiangdu Hydropower Station, and by adopting the serial model test method, the model scale effect was examined, the influences of the Reynolds and Weber numbers of water flow on the rain intensity of flood discharge atomization were analyzed and a rain intensity conversion relation was established. It is demonstrated that the level of atomization follows the geometric similarity relations and it is possible to ignore the influence of the surface tension of the flow when the Weber number is greater than 500. Despite limitations such as incomplete data sets, it is undoubtedly helpful to study the scale effect of atomization flow, and it is beneficial to identify the rules of the model test results in order to extrapolate to prototype prediction.