搜索到2276篇“ MULTI-PHYSICS“的相关文章
Multi-physics multi-scale simulation of unique equiaxed-to-columnar-to-equiaxed transition during the whole solidification process of Al-Li alloy laser welding
2024年
In this study,a novel multi-physics multi-scale model with the dilute multicomponent phase-field method in three-dimensional(3D)space was developed to investigate the complex microstructure evolu-tion in the molten pool during laser welding of Al-Li alloy.To accurately compute mass data within both two and three-dimensional computational domains,three efficient computing methods,including central processing unit parallel computing,adaptive mesh refinement,and moving-frame algorithm,were uti-lized.Emphasis was placed on the distinctive equiaxed-to-columnar-to-equiaxed transition phenomenon that occurs during the entire solidification process of Al-Li alloy laser welding.Simulation results indi-cated that the growth distance of columnar grains that epitaxially grew from the base metal(BM)de-creased as the nucleation rate increased.As the nucleation rate increased,the morphology of the newly formed grains near the fusion boundary(FB)changed from columnar to equiaxed,and newly formed equiaxed grains changed from having high-order dendrites to no obvious dendrite structure.When the nucleation rate was sufficiently high,non-dendritic equiaxed grains could directly form near the FB,and there was nearly no epitaxial growth from the BM.Additionally,simulation results illustrated the com-petition among multiple grains with varying orientations that grow in 3D space near the FB.Finally,how equiaxed grain bands develop was elucidated.The equiaxed band not only hindered the growth of early columnar grains but also some of its grains could grow epitaxially to form new columnar grains.These predicted results were in good agreement with experimental measurements and observations.
Chu HanPing JiangShaoning GengLiangyuan Ren
Understanding and improving Yangtze River Basin summer precipitation prediction using an optimal multi-Physics ensemble
2024年
This study employs the regional Climate-Weather Research and Forecasting model(CWRF)to first investigate the primary physical mechanisms causing biases in simulating summer precipitation over the Yangtze River Basin(YRB),and then enhance its predictive ability through an optimal multi-physics ensemble approach.The CWRF 30-km simulations in China are compared among 28 combinations of varying physics parameterizations during 1980−2015.Long-term average summer biases in YRB precipitation are remotely correlated with those of large-scale circulations.These teleconnections of biases are highly consistent with the observed correlation patterns between interannual variations of precipitation and circulations,despite minor shifts in their primary action centers.Increased YRB precipitation aligns with a southward shifted East Asian westerly jet,an intensified low-level southerly flow south of YRB,and a south-eastward shifted South Asian high,alongside higher moisture availability over YRB.Conversely,decreased YRB precipitation corresponds to an opposite circulation pattern.The CWRF control configuration using the ensemble cumulus parameterization(ECP),compared to other cumulus schemes,best captures the observed YRB precipitation characteristics and associated circulation patterns.Coupling ECP with the Morrison or Morrison-aerosol microphysics and the CCCMA or CAML radiation schemes enhances the overall CWRF skills.Compared to the control CWRF,the ensemble average of these skill-enhanced physics configurations more accurately reproduces YRB summer precipitation’s spatial distributions,interannual anomalies,and associated circulation patterns.The Bayesian Joint Probability calibration to these configurations improves the ensemble’s spatial distributions but compromises its interannual anomalies and teleconnection patterns.Our findings highlight substantial potential for refining the representation of climate system physics to improve YRB precipitation prediction.This is notably achieved by realistically coupling cumul
Yang ZHAOFengxue QIAOXin-Zhong LIANGJinhua YU
关键词:TELECONNECTION
Multi-Physics Coupled Acoustic-Mechanics Analysis and Synergetic Optimization for a Twin-Fluid Atomization Nozzle
2024年
Fine particulate matter produced during the rapid industrialization over the past decades can cause significant harm to human health.Twin-fluid atomization technology is an effective means of controlling fine particulate matter pollution.In this paper,the influences of the main parameters on the droplet size,effective atomization range and sound pressure level(SPL)of a twin-fluid nozzle(TFN)are investigated,and in order to improve the atomization performance,a multi-objective synergetic optimization algorithm is presented.A multi-physics coupled acousticmechanics model based on the discrete phase model(DPM),large eddy simulation(LES)model,and Ffowcs Williams-Hawkings(FW-H)model is established,and the numerical simulation results of the multi-physics coupled acoustic-mechanics method are verified via experimental comparison.Based on the analysis of the multi-physics coupled acoustic-mechanics numerical simulation results,the effects of the water flow on the characteristics of the atomization flow distribution were obtained.A multi-physics coupled acoustic-mechanics numerical simulation result was employed to establish an orthogonal test database,and a multi-objective synergetic optimization algorithm was adopted to optimize the key parameters of the TFN.The optimal parameters are as follows:A gas flow of 0.94 m^(3)/h,water flow of 0.0237 m^(3)/h,orifice diameter of the self-excited vibrating cavity(SVC)of 1.19 mm,SVC orifice depth of 0.53 mm,distance between SVC and the outlet of nozzle of 5.11 mm,and a nozzle outlet diameter of 3.15 mm.The droplet particle size in the atomization flow field was significantly reduced,the spray distance improved by 71.56%,and the SPL data at each corresponding measurement point decreased by an average of 38.96%.The conclusions of this study offer a references for future TFN research.
Wenying LiYanying LiYingjie LuJinhuan XuBo ChenLi ZhangYanbiao Li
极端条件下3维多物理多介质问题数值模拟中的若干问题
2024年
极端条件下3维多物理多介质问题是一类关系国家战略安全问题的重要科学问题.由于理论手段比较欠缺、实验昂贵甚至难以开展,数值模拟是研究这类问题的主要手段.本文回顾这一研究领域数值模拟的历史,分析目前存在的主要挑战,并展望未来的发展趋势.
陈艺冰江松
关键词:数值模拟
核反应堆系统多维度多物理场耦合有限元分析研究
2024年
核反应堆系统庞杂且运行环境严苛,存在多物理场耦合的复杂现象。早期开发的多物理场耦合软件具有扩展性和通用性不足的缺点。因此,搭建多物理场耦合框架,针对耦合问题中的关键技术开展研究,对加快我国自主化多物理场耦合平台开发进程具有重要意义。本文介绍了西安交通大学核反应堆热工水力研究室开发的核反应堆多维度多物理场耦合有限元分析平台,主要包含热工流体计算模型的开发、燃料性能分析技术的研究以及多物理场耦合框架的建立等工作。在热工流体计算方面,开展了核反应堆系统两相流分析模型和液态金属快堆子通道分析模型研究,开发了系统分析程序NUSAC和子通道分析程序FLARE;在燃料性能分析技术方面,开展了包覆颗粒弥散燃料和板状燃料的性能分析研究,开发了针对多种燃料的燃料性能分析程序BEEs;在多物理场耦合分析方面,搭建了多物理场耦合框架,结合热工水力、中子物理和燃料性能分析程序,实现了核反应堆多物理场耦合的精细分析。本文搭建的核反应堆系统多维度多物理场耦合有限元分析平台可为核反应堆系统多维度多物理场耦合高保真数值模拟分析提供有力支持。
巫英伟贺亚男章静田文喜苏光辉秋穗正
关键词:有限元子通道
Noah-MP陆面过程模式在雅鲁藏布江流域径流模拟中的适用性评估
2024年
雅鲁藏布江(以下简称雅江)流域的气象水文模拟是当前全球变化研究的热点与难点.Noah-MP(the Noah land surface model with multi-parameterizations)陆面过程模式作为该区域气象水文双向耦合过程的重要数值模拟工具,鲜有研究针对其径流模拟能力进行过系统性评估,限制了模式在该区域的水文应用.本研究基于中国区域地面气象要素数据集CMFD(China Meteorological Forcing Dataset)驱动Noah-MP模式,对雅江流域2000~2018年的径流进行时空分辨率为3 h/5 km的数值模拟;选取与流域径流产生机制相关的10个主要物理过程,评估了16种参数化方案组合对于径流模拟的影响,并确定了最优参数化方案组合.结果表明:(1)采用默认参数化方案,Noah-MP在奴下站的月尺度模拟纳什效率系数NSE(Nash-Sutcliffe efficiency)为0.23、偏差百分比PBias为–35.79%,而采用基于临界温度的雨雪分离方案、改进的二流近似辐射传输方案以及基于BATS的产流方案后,PBias分别减少至–23.36%、3.85%、–17.19%,NSE分别提高至0.37、0.58、0.60,显著优于默认方案;(2)进一步基于优选方案进行组合,奴下、羊村、奴各沙的月尺度径流NSE分别提高至0.89、0.87、0.81,而最上游拉孜站NSE仅为–0.06,低于个别方案,这表明拉孜流域的产流机制可能不同于下游流域.研究结果表明,无参数率定的Noah-MP模式在雅江径流模拟中的表现较为优异,具有较高的应用潜力,未来可通过进一步改进雨雪分离、辐射传输、产流过程的参数化方案来提高模式在高寒区的径流模拟能力.
杨恒雷享勇郑辉费雯丽刘志武林佩蓉
关键词:陆面过程模式参数化方案雅鲁藏布江流域径流模拟
基于Workbench的电机多物理场仿真分析
2024年
电机运行涉及力学、热等耦合作用,因此研究多场耦合作用下的电机性能对提高电机综合性能具有重要作用。文章基于Workbench对电机进行静力学分析和热分析。首先通过单场耦合分析得到电机性能,然后通过热固耦合多场仿真研究电机综合性能,随后将多场耦合分析结果和单场耦合分析结果与电机实际性能进行对比分析,得出多场耦合作用与实际性能更加吻合,并验证了多场耦合分析的准确性。
杜宏娥苏泽辉
关键词:电机WORKBENCH
多孔弥散微封装燃料元件多场耦合性能分析
2024年
高温气冷堆是核热推进的主力候选堆型之一,燃料元件的性能直接决定了反应堆的性能,高温气冷堆的燃料元件形式众多,高安全性的弥散微封装燃料在高温气冷堆中具有极高的应用前景。因此,有必要针对高温气冷堆用弥散微封装燃料开展研究。提出将TRISO燃料颗粒弥散于SiC基体的多孔弥散微封装燃料的设计方案,并基于有限元分析软件COMSOL建立了三维热流固耦合分析模型,初步实现了该燃料元件性能分析,开展了不同冷却剂流量下的燃料元件热力行为分析。结果表明:流量越高,燃料元件最高温度越低,分别为1 340、1 250、1 180 K,远低于SiC材料熔点,无熔化风险;六棱柱内部的温度分布相对均匀,而六棱柱6个角处的温度分布相对不均匀;基体最大主应力出现在冷却剂流道周围,最大主应力最大值为95.6 MPa,其余位置整体最大主应力较小,最大主应力低于SiC材料断裂强度。
李晨曦李权黄永忠赵波王浩煜刘仕超李垣明陈平
关键词:多场耦合
螺旋金属燃料多物理耦合分析方法与概念设计研究
2024年
螺旋金属燃料具有导热系数高、导热路径短、强制旋流交混的特点,可实现更高的堆芯功率密度,进而减小堆芯体积,提高反应堆的安全性和经济性。本文介绍了上海交通大学反应堆热工水力实验室建立的螺旋金属燃料热工水力、中子物理、力学特性分析方法及多物理耦合分析框架。在热工水力方面,基于自研仪器实现了交混及沸腾临界行为精细化测量,建立了三维及精细化子通道分析方法;在中子物理方面,建立了适用于特殊能谱、复杂几何的截面及稳瞬态中子物理特性的分析方法;在力学方面,基于分子动力学方法建立了U-Zr合金燃料基础热物性模型,并开展了辐照条件下螺旋棒宏观力学特性研究。基于热工-物理-力学多物理分析和优化,提出了螺旋金属燃料组件及堆芯设计,具有无硼化、堆芯功率密度高、体积小、换料周期长的特点。
顾汉洋肖瑶丛腾龙郭辉傅俊森蔡孟珂宋去非
锂离子电池多物理场耦合模型中的粒径分析
2024年
为深入理解锂离子电池(Lithium-Ion Battery,LIB)内部的多物理场耦合行为,更好地为锂离子电池的生产制造及优化等工作提供参考,文中通过数值模拟方式,在有限元仿真软件COMSOL Multiphysics中建立了更符合物理实际的锂离子电池电化学-热-力(Electrochemical-Thermal-Mechanical,ETM)耦合模型,并进行求解。该模型考虑了电池工作时电极与颗粒两个尺度中的应力生成,解决了以往模型中电极层面应力难以计算的问题。同时通过考虑应力对锂离子扩散及过电位的修正,更好地关联了应力与电化学间的关系。基于该模型,文中讨论了不同正极粒径对电池性能的影响。数值结果表明,当正极粒径小时,锂离子电池放电过程中各物理场的性能指标较好,电池能量密度增大,证明采用较小的正极粒径可提升锂离子电池性能。
余润洲李培超
关键词:锂离子电池能量密度有限元仿真应力粒径

相关作者

尤富生
作品数:189被引量:577H指数:14
供职机构:第四军医大学
研究主题:电阻抗断层成像 电阻抗 电阻抗成像 生物电阻抗 EIT
张睿
作品数:127被引量:215H指数:8
供职机构:中国石油大学(北京)
研究主题:离子液体 烷基化 催化剂 烷基化反应 离子液体催化
吴佳铭
作品数:1被引量:0H指数:0
供职机构:第四军医大学
研究主题:肺通气 胸部 动态仿真 电阻抗 生物电阻抗