We report progress towards a modern scientific description of thermodynamic properties of fluids following the discovery (in 2012) of a coexisting critical density hiatus and a supercritical mesophase defined by percolation transitions. The state functions density ρ(p,T), and Gibbs energy G(p,T), of fluids, e.g. CO2, H2O and argon exhibit a symmetry characterised by the rigidity, ω = (dp/dρ)T, between gaseous and liquid states along any isotherm from critical (Tc) to Boyle (TB) temperatures, on either side of the supercritical mesophase. Here, using experimental data for fluid argon, we investigate the low-density cluster physics description of an ideal dilute gas that obeys Dalton’s partial pressure law. Cluster expansions in powers of density relate to a supercritical liquid-phase rigidity symmetry (RS) line (ω = ρrs(T) = RT) to gas phase virial coefficients. We show that it is continuous in all derivatives, linear within stable fluid phase, and relates analytically to the Boyle-work line (BW) (w = (p/ρ)T = RT), and to percolation lines of gas (PB) and liquid (PA) phases by: ρBW(T) = 2ρPA(T) = 3ρPB(T) = 3ρRS(T)/2 for T TB. These simple relationships arise, because the higher virial coefficients (bn, n ≥ 4) cancel due to clustering equilibria, or become negligible at all temperatures (0 T TB)within the gas phase. The Boyle-work line (p/ρBW)T is related exactly at lower densities as T → TB, and accurately for liquid densities, by ρBW(T) = −(b2/b3)T. The RS line, ω(T) = RT, defines a new liquid-density ground-state physical constant (ρRS(0) = (2/3)ρBW(0) for argon). Given the gas-liquid rigidity symmetry, the entire thermodynamic state functions below TB are obtainable from b2(T). A BW-line ground-state crysta
The aim of this study was to evaluate the effectiveness of BM (basement membrane) and SIS (small intestine submucosa) composite extracellular matrix staple line reinforcement in surgical procedures through finite element modelling simulations and leak-proof performance experiments. The mechanical analyses of soft tissues with and without staple line reinforcement were performed by establishing finite element models of three tissues, namely, stomach, intestine and lungs, under the use scenarios of different anastomosis staple models;and the leak-proof performance of the staple line reinforcement was evaluated by simulating leak-proof experiments of gastric incision margins, intestinal sections, and lung incision margins in vitro. The results showed that the equivalent average stresses of the staple line reinforcement were increased by 20 kPa-68 kPa in gastric and intestinal tissues, and 8 kPa-22 kPa in lung tissues. and that the BM and SIS composite extracellular matrix staple line reinforcement could strengthen the anastomotic structure, and at the same time disperse the high stresses of the anastomosed tissues, which could effectively reduce the postoperative complications such as anastomotic bleeding and anastomotic leakage, and provide a safer and more effective optimized design for surgical mechanical anastomosis. It can effectively reduce postoperative complications such as anastomotic bleeding and anastomotic leakage, and provide a safer and more effective optimized design for surgical mechanical anastomosis.