搜索到7039篇“ GARCH-M模型“的相关文章
基于PCA-GARCH-LSTM模型的股价预测研究
2025年
股市波动日益成为社会的焦点话题,如何高效且准确地预测股票价格成为当前热门研究课题。为减少计算量并提高工作效率,在预测前对股票数据采用降维技术,同时考虑股票波动情况,结合主成分分析(PCA)、广义自回归条件异方差(GARCH)和长短期记忆网络(LSTM)3种模型,构建组合模型进行股价预测。为检验模型预测效果,以上证指数和中证500指数为例,对收盘价进行预测。对比实验结果表明,该PCA-GARCH-LSTM组合模型的RMSE、MAE、MAPE值均小于其他对照模型,证明了该模型预测的有效性。
姜敏张楚沂孙德山
关键词:GARCH模型股价预测
基于GARCH-BP模型的股票价格波动性研究
2025年
股票市场快速发展,股票价格波动性研究备受关注,准确预测股价走势对投资者决策和市场稳定意义重大。鉴于股票价格波动的不确定性与非线性特征,单一模型预测效果欠佳。为此,本文提出将GARCH与BP神经网络相结合的组合预测方法,以中国农业银行股票日收盘价数据为例,基于误差修正思想构建组合模型,运用BP神经网络对GARCH模型的残差数据进行预测校正。研究结果表明组合模型预测效果优于单一模型,验证了该组合模型在提高股票价格预测准确度方面的有效性。With the rapid development of the stock market, the study of stock price volatility has attracted much attention, and accurate prediction of stock price movements is of great significance to investors’ decision-making and market stability. In view of the uncertainty and nonlinear characteristics of stock price volatility, the prediction effect of a single model is not good. For this reason, this paper proposes a combined prediction method combining GARCH and BP neural network, taking the daily closing price data of Agricultural Bank of China as an example, constructing a combined model based on the idea of error correction, and utilizing BP neural network to correct the residual data of the GARCH model for prediction. The results show that the combination model predicts better than a single model, which verifies the effectiveness of the combination model in improving the accuracy of stock price prediction.
严彦文王彩云
关键词:GARCH模型BP神经网络波动性
基于GARCH-VaR模型的商业银行市场风险度量——以贵阳银行为例
2025年
随着金融体系的快速发展,商业银行作为金融体系中的重要组成部分,在推动整个行业稳定运行和发展的同时,面临更多的风险和挑战。市场风险已经成为商业银行面临的主要风险,本文以贵阳银行为例,采用贵阳银行每日收盘价数据建立股票价格的日对数收益率序列,根据金融时间序列的波动性和异方差性特征,以GARCH模型为基础建立反映其股价变化的波动率模型,计算VaR值。研究结果表明贵阳银行的VaR值高达0.216629,说明贵阳银行收益率在95%的置信水平上损失极限为资产市场价值的21.66%,面临着较大的市场风险。因此,贵阳银行应该采取相应的措施管理和应对面临的市场风险,确保银行的稳健运营和持续发展。With the rapid development of the financial system, commercial banks, as an important part of the financial system, are promoting the stable operation and development of the entire industry while facing more risks and challenges. Market risk has become the main risk faced by commercial banks. Taking Bank of Guiyang as an example, this paper uses the daily closing price data of Bank of Guiyang to establish a daily logarithmic return rate sequence of stock prices. According to the volatility and heteroscedasticity characteristics of financial time series, a volatility model reflecting its stock price changes is established based on the GARCH model to calculate the VaR value. The research results show that the VaR value of Bank of Guiyang is as high as 0.216629, indicating that the loss limit of the return rate of Bank of Guiyang is 21.66% of the market value of assets at the 95% confidence level, and it is facing relatively large market risks. Therefore, Bank of Guiyang should take corresponding measures to manage and deal with the market risks it faces to ensure the stable operation and sustainable development of the bank.
李娱
关键词:商业银行市场风险度量GARCH-VAR模型
混合分布下GARCH-Jump模型的稳健推断
2025年
金融资产价格的收益率往往呈现尖峰厚尾的特征,且收益率可以分解为跳跃过程和非跳跃过程,其中跳跃行为会对金融市场产生显著影响.对现有文献中基于高斯分布的GARCH-Jump模型进行了改进,研究更符合金融数据的混合分布条件下对数收益率的GARCH-Jump模型,运用EM算法进行参数估计,判断跳跃点的发生.通过实证分析,发现在混合分布下建立的GARCH-Jump模型更符合对数收益率的分布特征,对于跳跃点的识别比现有基于混合高斯分布的模型更加稳健,同时可以获得更高收益.
张宾周艺
关键词:对数收益率T分布参数估计EM算法
一种混合向量自回归与GARCH-Copula模型的中长期径流概率预报方法
本发明公开了一种混合向量自回归与GARCH‑Copula模型的中长期径流概率预报方法,包括:收集、整理待预报站点所在流域长系列中长期径流数据,选取预报模型进行模拟预报并分析预报误差统计特征参数;在不考虑多站点径流预报残差...
徐斌季赛金莫然王森郑文
一类多元函数系数GARCH-M模型研究
2024年
本文将函数系数GARCH-M模型推广到多元情形,研究了一类多元函数系数GARCH-M模型,旨在把序列之间的交互作用引入到风险厌恶的研究上。文章给出了函数系数和模型参数的估计方法。数值模拟的结果表明,该方法的估计效果良好。实证分析基于上证综合指数和深证综合指数的日收益率数据,研究结果表明,多元函数系数GARCH-M模型能够更好地拟合所考虑的数据。In this paper, the GARCH-M model of function coefficients is extended to multivariate cases, and a class of GARCH-M model with multivariate function coefficients is studied, aiming at introducing the interaction between sequences into the study of risk aversion. The estimation methods of function coefficients and model parameters are given in this paper. Numerical simulation results show that the proposed method is effective. The empirical analysis is based on the daily return data of Shanghai Composite Index and Shenzhen Composite Index, and the research results show that the multivariate function coefficient GARCH-M model can better fit the considered data.
王思宇张兴发
关键词:函数系数GARCH-M模型波动率
基于GARCH-informer模型的期权定价研究
期权定价的准确性在金融市场的投资决策中至关重要,但传统的定价模型常常依赖于多项前提假设,这些假设在复杂多变的市场环境中往往难以成立,导致定价的精度有很大的提升空间。  本文选取了沪深300ETF期权在2022年6月9日至...
赖婧
关键词:期权定价GARCH模型
基于GARCH-VaR模型的上证指数风险测度
2024年
本文以上证指数的日收益率为样本,对上证指数建立GARCH-VaR模型,比较不同分布假定下GARCH模型对上证指数波动率的拟合效果,计算并检验上证指数VaR值的预测结果对实际损失的覆盖情况。分析的结果表明,TARCH模型与EGARCH模型更适合测度上证指数条件方差,且在t分布下,模型能够更好地反映上证指数收益率扰动项的分布特征。进一步,为克服ARMA-GARCH模型在中长期预测中出现的较大误差,使用ARIMA-LSTM模型结合GARCH模型预测指数波动率,有效提高了GARCH-VaR模型的预测准度。最后,通过TARCH模型,初步检验了我国股市注册制全面推行对上证指数波动率所产生的影响,发现该政策的实施显著降低了上证指数的波动幅度。This article takes the daily return of the Shanghai Composite Index as a sample, establishes a GARCH-VaR model for the Shanghai Composite Index, compares the fitting effect of GARCH models on the volatility of the Shanghai Composite Index under different distribution assumptions, calculates and tests the coverage of actual losses by the predicted VaR value of the Shanghai Composite Index. The analysis results indicate that the TARCH model and EGARCH model are more suitable for measuring the conditional variance of the Shanghai Composite Index, and under the t-distribution, the model can better reflect the distribution characteristics of the disturbance term of the Shanghai Composite Index return. Furthermore, to overcome the significant errors in medium- and long-term forecasting caused by the ARMA-GARCH model, the ARIMA-LSTM model combined with GARCH class models was used to predict index volatility, effectively improving the prediction accuracy of the GARCH-VaR model. Finally, through the TARCH model, the impact of the comprehensive implementation of the registration system in China’s stock market on the volatility of the Shanghai Composite Index was preliminarily examined, and it was found that the implementation of this po
杨智灵
关键词:GARCH类模型GARCH-VAR模型注册制
PTA期货风险度量——基于GARCH-VaR模型
2024年
随着全球金融市场的不断扩张,各类金融市场的风险度量和管理越来越受到投资者和研究人员的重视。文章采用VaR方法来度量PTA期货市场中的风险,利用Eviews软件建立GARCH-VaR模型来进行风险度量,并分析其效果。文章以郑商所的PTA期货为研究对象,选取了两年内的期货价格信息作为研究样本,通过计算收益率序列并进行一系列检验,建立模型并计算VaR,最终得出结论。
闫石
关键词:PTA期货GARCH-VAR模型
全球政治、经济不确定性与黄金价格波动--基于GARCH-MIDAS模型的实证研究
2024年
从政治和经济不确定性两个维度入手构建GJR-GARCH-MIDAS模型,探讨全球不确定性对国际黄金价格波动的溢出效应及其传导路径,并对黄金市场的未来价格波动趋势进行考察。(1)全球政治、经济不确定性对黄金价格波动产生显著正向冲击,纳入不确定性因素的双因子GARCH-MIDAS模型对后者的解释效果较佳。(2)不同政治、经济不确定性子要素对黄金市场的冲击强度和冲击时间具有异质性;地缘政治行动和货币政策不确定性是影响黄金价格长期波动的最主要因素。(3)外部不确定性主要通过影响黄金的商品属性、资产属性、准货币属性对黄金市场施加影响,其中“准货币属性”是近年来不确定性冲击影响黄金市场波动的最主要路径。(4)模型预测结果显示,随着全球政治、经济不确定性因素的减弱和反复,黄金价格长期波动成分从2023年第二季度开始,将逐步下移,随后在第四季度有所反弹。
于寄语于承峰魏金龙