One caveat to the dinosaur’s extinction is the conclusion that avian dinosaurs survived and became ancestors of birds. Their mobility enabled them to migrate great distances and find the nutrients needed to survive. Given this scenario, could the current observable migration of birds (the “dinosaurian offspring”) now be related? Migration is the regular seasonal movement undertaken by many species of birds, with the most common pattern, flying north in the Northern spring to breed in the temperate or Arctic summer and returning in the Northern autumn to wintering grounds in warmer regions of the south. The primary motivation for migration appears to be food. None of the major North-South migratory pathways fly over the Caribbean but three main fly ways, past to the west of the theorized K-T impact centre. Due to their ability to fly, the “avian Dinosaurs” adapted and survived very quickly in response to the disaster that marked the K-T boundary. It is an interesting speculation that the avian migration that we witness today is rooted in an event that occurred 66 million years ago! But it does explain why the migratory birds mostly fly from Polar summer to polar summer when they could just be as easily fly from Polar zone to the warmer equatorial region and back. In the recent article in Nature by Melanie During about identifying the late spring timing of the “Astro disaster”, it can be cited as consistent with my speculation. A late April early May Impact as suggested by During would have seen these migrations completely. The western migratory routes would have been found to be “luxurious” in vegetation in that first northern autumn after the “Astro-impact” while all eastern routes would have still been barren.
In this article, we develop and analyze a continuous-time Markov chain (CTMC) model to study the resurgence of dengue. We also explore the large population asymptotic behavior of probabilistic model of dengue using the law of large numbers (LLN). Initially, we calculate and estimate the probabilities of dengue extinction and major outbreak occurrence using multi-type Galton-Watson branching processes. Subsequently, we apply the LLN to examine the convergence of the stochastic model towards the deterministic model. Finally, theoretical numerical simulations are conducted exploration to validate our findings. Under identical conditions, our numerical results demonstrate that dengue could vanish in the stochastic model while persisting in the deterministic model. The highlighting of the law of large numbers through numerical simulations indicates from what population size a deterministic model should be considered preferable.
Extinction selectivity determines the direction of macroevolution,especially during mass extinction;however,its driving mechanisms remain poorly understood.By investigating the physiological selectivity of marine animals during the Permian-Triassic mass extinction,we found that marine clades with lower O2-carrying capacity hemerythrin proteins and those relying on O2 diffusion experienced significantly greater extinction intensity and body-size reduction than those with higher O2-carrying capacity hemoglobin or hemocyanin proteins.Our findings suggest that animals with high O2-carrying capacity obtained the necessary O2 even under hypoxia and compensated for the increased energy requirements caused by ocean acidification,which enabled their survival during the Permian-Triassic mass extinction.Thus,high O2-carrying capacity may have been crucial for the transition from the Paleozoic to the Modern Evolutionary Fauna.
Nested subset pattern(nestedness)is an important part of the theoretical framework of island biogeography and community ecology.However,most previous studies often used nestedness metrics or randomization algorithms that are vulnerable to type I error.In this study,we inves-tigated the nestedness of lizard assemblages on 37 islands in the Zhoushan Archipelago,China.We used the line-transect method to survey species occurrence,abundance,and habitat types of lizards on 37 islands during 2 breeding seasons in 2021 and 2022.We applied the nested metric WNODF and the conservative rc null model to control for type I error and quantify the significance of nestedness.Spearman rank cor relations were used to evaluate the role of 4 habitat variables(island area,2 isolation indices,and habitat diversity)and 4 ecological traits(body size,geographic range size,clutch size,and minimum area requirement)in generating nestedness.The results of WNODF analyses showed that lizard assemblages were significantly nested.The habitat-by-site matrix estimated by the program NODF was also significantly nested,support-ing the habitat nestedness hypothesis.The nestedness of lizard assemblages were significantly correlated with island area,habitat diversity.clutch size,and minimum area requirement.Overall,our results suggest that selective extinction and habitat nestedness were the main drivers of lizard nestedness in our system.In contrast,the nestedness of lizard assemblages was not due to passive sampling or selective colonization.To maximize the number of species preserved,our results indicate that we should protect both large islands with diverse habitats and species with largearea requirement and clutch size.
Minchu ZhangChaonan TangQing ZhangChengxiu ZhanChuanwu ChenYanping Wang
We study the distribution of quasars on the celestial sphere according to ground-based SDSS and space-based WISE and Gaia observations. All distributions as a function of galactic latitude, b, exhibit a decrease in quasar frequency well outside the dust in and near the galactic plane. We prove that the observed decrease in quasar frequency at high galactic latitudes is not accompanied by reddening, meaning that it can not be caused by dust. The scattering of light by the circumgalactic gas is negligible because the Thomson scattering cross section is very small. We conclude the observed scattering of light must be caused by dark matter in the galactic halo. We determine the mass and charge of dark matter particles. If the dark matter particle is a fermion its mass, mDMand charge eDM=δe, where e is the elementary charge are: mDM=3.2×10−2eV and δ=3.856×10−5. If however the dark matter particle is spinless then: mDM=0.511eV and δ=2.132×10−4. These values for the charge of a dark matter particle are orders of magnitude higher than the upper limit of the neutrino charge according to laboratory experiments. Consequently, dark matter particles are not charged neutrinos. Since dark matter particles are charged, they must emit and absorb electromagnetic radiation. However, PDM~δ2, or: PDM~1.487×10−9Pe, where Peis the power output of a single electron.
Abdominal and pelvic pain of psychogenic origin is a widespread, disabling, difficult to identify, and often inadequately treated medical condition. This condition is often associated with poor quality of life due to high pain interference with daily activities. Cognitive behavioral psychological therapy and neuromodulation with biofeedback are validated therapies for the treatment of this condition. Aim of the present research work is the validation of a therapeutic protocol that involves the use of both techniques in combination. 20 patients diagnosed with psychogenic abdominal pain, of both sexes, aged between 18 and 60 years who had not benefited from pharmacological therapies were enrolled. 10 patients were randomly assigned to the control group (psychological treatment only), another 10 patients were assigned to the study group (neuromodulation with biofeedback-Galvanic skin response-extinction in combination with psychological therapy). For both groups, the pain score, interference of pain with daily living activities, pain relief, and the share of anxiety associated with the pain condition were evaluated (pre- and post-treatment). The patients who underwent the combined treatment achieved statistically significant better scores than patients in the control group, respectively −4.9 ± 0.9 vs −1.0 ± 0.4 for Pain;−5.1 ± 1.1 vs −0.9 ± 0.3 for Interference with life;−7.2 ± 3.7 vs −2.2 ± 2.1 for HAMA;4.6 ± 1.2 vs 1.1 ± 0.6 for Relief.
Maddalena CastellettiEnrico BernéErasmo Dionigio Carlo CastagnoliAlberto MontagnaGiorgio Tonon
Dear Editor,The Cretaceous-Paleogene(K-Pg)mass extinction precipitated one of the most profound restructurings of biodiversity in recent geological history.Despite the extinction of many iconic groups,particularly the non-avian dinosaurs,there is emerging evidence that previously overlooked taxa experienced stark morphological and evolutionary stasis.In this study,we report both adult and larva of beetles of the genus Loricera preserved in mid-Cretaceous Kachin amber(Figure 1),which display striking similarity to extant congeners,indicating a stasis of their specialized feeding behavior persisting at least 100 million years.
Yan-Da LiErik TihelkaMichael SEngelDiying HuangChenyang Cai