Dual-excitation and dual-emission Y_(4)GeO_(8):Bi^(3+),Sm^(3+)phosphors were manufactured by traditional solidphase sintering technique.The X-ray diffraction,morphology,photoluminescence,energy transfer process and temperature sensing properties of Y_(4)GeO_(8):Bi^(3+),Sm^(3+)samples were comprehensively evaluated.The Y4GeO_(8):Bi^(3+),Sm^(3+)phosphors exhibit characteristic emissions of Bi^(3+)(^(3)P_(1)→^(1)S_(0)) and Sm^(3+)(^(4)G_(5/2)→^(6)H)under both 290 and 347 nm excitations.In fluorescence intensity ratio and Commission International de L'Eclairage coordinates modes,Y_(4)GeO_(8):Bi^(3+),Sm^(3+)samples present excellent temperature measurement performance.The maximum relative sensitivity(S_(r-max)) values of the former are 1.55%/K(460 K,290 nm excitation) and 0.82%/K(506 K,347 nm excitation).The S_(r-max)(x) values of the latter are 0.21 %/K(437 K,290 nm excitation) and 0.15%/K(513 K,347 nm excitation).These results illustrate that Y_(4)GeO_(8):Bi^(3+),Sm^(3+)phospho rs can be used as a candidate material for a dual-mode optical thermometer under dual-excitation.
Microcombs have enabled a host of cutting-edge applications from metrology to communications that have garnered significant attention in the last decade.Nevertheless,due to the thermal instability of the microresonator,additional control devices like auxiliary lasers are indispensable for single-soliton generation in some scenarios.Specifically,the increased system complexity would be too overwhelming for dual-microcomb generation.Here,we put forward a novel approach to mitigate the thermal instability and generate the dual-microcomb using a compact system.This process is akin to mode-division multiplexing,as the dual-microcombs are generated by pumping the dual-mode of a single Si_(3)N_(4) microresonator with a continuous-wave laser.Both numerical simulations and experimental measurements indicate that this innovative technique could offer a straightforward way to enlarge the soliton existence range,allowing entry into the multistability regime and triggering another microcomb alongside the main soliton pulse.This outcome not only shines new light on the interaction mechanism of microresonator modes but also provides an avenue for the development of dual-microcomb-based ranging and low phase noise microwave generation.
Sweat loss monitoring is important for understanding the body’s thermoregulation and hydration status,as well as for comprehensive sweat analysis.Despite recent advances,developing a low-cost,scalable,and universal method for the fabrication of colorimetric microfluidics designed for sweat loss monitoring remains challenging.In this study,we propose a novel laserengraved surface roughening strategy for various flexible substrates.This process permits the construction of microchannels that show distinct structural reflectance changes before and after sweat filling.By leveraging these unique optical properties,we have developed a fully laser-engraved microfluidic device for the quantification of naked-eye sweat loss.This sweat loss sensor is capable of a volume resolution of 0.5µL and a total volume capacity of 11µL,and can be customized to meet different performance requirements.Moreover,we report the development of a crosstalk-free dual-mode sweat microfluidic system that integrates an Ag/AgCl chloride sensor and a matching wireless measurement flexible printed circuit board.This integrated system enables the real-time monitoring of colorimetric sweat loss signals and potential ion concentration signals without crosstalk.Finally,we demonstrate the potential practical use of this microfluidic sweat loss sensor and its integrated system for sports medicine via on-body studies.
Bowen ZhongHao XuXiaokun QinLingchen LiuHailong WangLili Wang
The dual-mode stabilization scheme has been demonstrated as an efficient way to stabilize laser frequency.In this study,we propose a novel dual-mode stabilization scheme that employs a sizable Fabry-Pérot cavity instead of the microcavity used in previous studies and has enabled higher bandwidth for locking.The results demonstrate a 30-fold reduction in laser frequency drift,with frequency instability below 169 kHz for integration time exceeding 1 h and a minimum value of 33.8 kHz at 54 min.Further improvement could be achieved by optimizing the phase locking.This scheme has potential for use in precision spectroscopic measurement.
Norovirus(NoV)is regarded as one of the most common causes of foodborne diarrhea in the world.It is urgent to identify the pathogenic microorganism of the diarrhea in short time.In this work,we developed an electrochemical and colorimetric dual-mode detection for NoV based on the excellent dual catalytic properties of copper peroxide/COF-NH_(2)nanocomposite(CuO_(2)@COF-NH_(2)).For the colorimetric detection,NoV can be directly detected by the naked eye based on CuO_(2)@COF-NH_(2)as a laccase-like nonazyme using“peptide-NoV-antibody”recognition mode.The colorimetric assay displayed a wide and quality linear detection range from 1 copy/mL to 5000 copies/mL of NoV with a low limit of detection(LOD)of 0.125 copy/mL.For the electrochemical detection of NoV,CuO_(2)@COF-NH_(2)showed an oxidation peak of copper ion from Cu^(+)to Cu^(2+)using“peptide-NoV-antibody”recognition mode.The electrochemical assay showed a linear detection range was 1-5000 copies/mL with a LOD of 0.152 copy/mL.It's worthy to note that this assay does not need other electrical signal molecule,which provide the stable and sensitive electrochemial detection for NoV.The electrochemical and colorimetric dual-mode detection was used to detect NoV in foods and faceal samples,which has the potential for improving food safety and diagnosing of NoV-infected diarrhea.
Guobao NingQuanmei DuanHuan LiangHuifang LiuMin ZhouChunlan ChenChong ZhangHui ZhaoCanpeng Li