This paper presents a micromechanics-based Cosserat continuum model for microstructured granular materials.By utilizing this model,the macroscopic constitutive parameters of granular materials with different microstructures are expressed as sums of microstructural information.The microstructures under consideration can be classified into three categories:a medium-dense microstructure,a dense microstructure consisting of one-sized particles,and a dense microstructure consisting of two-sized particles.Subsequently,the Cosserat elastoplastic model,along with its finite element formulation,is derived using the extended Drucker-Prager yield criteria.To investigate failure behaviors,numerical simulations of granular materials with different microstructures are conducted using the ABAQUS User Element(UEL)interface.It demonstrates the capacity of the proposed model to simulate the phenomena of strain-softening and strain localization.The study investigates the influence of microscopic parameters,including contact stiffness parameters and characteristic length,on the failure behaviors of granularmaterials withmicrostructures.Additionally,the study examines themesh independence of the presented model and establishes its relationship with the characteristic length.A comparison is made between finite element simulations and discrete element simulations for a medium-dense microstructure,revealing a good agreement in results during the elastic stage.Somemacroscopic parameters describing plasticity are shown to be partially related to microscopic factors such as confining pressure and size of the representative volume element.
Mainly for the problems that the configuration of the mobile cable on the satellite is very easy to change,the motion trajectory and dynamic characteristics of the cable can not be accu-rately predicted,which affects the laying quality seriously,the dynamic modeling and simulation of mobile cable on the satellite are carried out.On the basis of referring to the previous papers,the existing mathematical model is improved.The equations of the base vector of the cable section principal axis coordinate system with respect to the arc coordinate s,the distribution force of cable balance equation,the matrix expression of the base vector after the rotation motion transformation in the section principal axis coordinate system,the angular velocity of cable,the section elastic strain and velocity calculation equations are given,and the Cosserat dynamic modeling of the mobile cable is established.Finally,the dynamic simulation model of the mobile cable assembly of the kinematic mechanism is established,and the changes of the force and torque on the cable con-straint end are obtained,which provides a reference for the dynamic modeling and simulation of the mobile cable on satellite.
This article provides the numerical modeling of the dislocations in the Cosserat elastic plates based on the Cosserat Plates Theory developed by the authors. The dislocation is modeled by a sequence of domains that converge to the point of the dislocation and by a residual force distributed around that point. The plate deformation caused by the dislocation is calculated using the Finite Element Method. We also discuss the effect of the dislocation on the cavities present in the Cosserat plates.