针对非光滑非凸–强拟凹鞍点问题,本文利用Bregman距离建立了Bregman近端梯度上升下降算法。对Bregman近端梯度上升迭代算法中,得到内部最大化问题函数差值不等式,从而得到近端梯度上升迭代点之间的不等式关系。对于非凸非光滑问题,引入扰动类梯度下降序列,得到算法的次收敛性,当目标函数为半代数时,得到算法的全局收敛性。For the nonsmooth nonconvex-strongly quasi-concave saddle point problems, this paper establishes the Bregman proximal gradient ascent-descent algorithm by using the Bregman distance. In the Bregman proximal gradient ascent iterative algorithm, the difference inequality of the internal maximization problem function is obtained, and thus the inequality relationship between the proxi-mal gradient ascent iterative points is derived. For nonconvex and nonsmooth problems, a perturbed gradient-like descent sequence is introduced to obtain the sub-convergence of the algorithm. When the objective function is semi-algebraic, the global convergence of the algorithm is obtained.
3×3块鞍点问题作为一类特殊的线性方程组,其迭代方法的研究极具挑战性。基于经典的广义逐次超松弛(Generalized Successive Over Relaxation,GSOR)方法,针对3×3块大型稀疏鞍点问题,提出了三参数的中心预处理GSOR方法并讨论了其收敛性。同时,通过数值实验验证了新方法在计算花费方面优于中心预处理的Uzawa-Low方法。进一步地,还将新方法拓展到i×i块鞍点问题,提出了相应的GSOR类迭代框架,通过数值实验和数据分析,给出了选择较优i的初步建议。