利用热膨胀仪、热模拟试验机、金相显微镜、场发射扫描电镜等测定了100Cr6轴承钢的CCT曲线,试验研究了热压缩及控轧控冷对网状碳化物析出行为的影响。结果表明:第二道次压缩温度从850℃降低至700℃时,奥氏体再结晶细化向未再结晶转变,二次碳化物逐步由晶界封闭网状向半封闭条状、短杆状再向沿拉长的奥氏体晶界链状转变,750~800℃内变形碳化物细小、分散;Φ10 mm 100Cr6线材采用910℃降至770℃温度控轧+快速冷却工艺,其热轧态、球化退火及淬回火后碳化物分布均匀性逐步提升,奥氏体晶粒由8.0级细化至10.0级,晶界碳化物由封闭网状向断续条状转变,平均厚度从0.54μm降低至0.11μm,网状级别由3.0级占比33%降低至≤2.0级占比100%,可缩短球化退火时间及提高轴承的疲劳寿命。
A comparative study of the structure and mechanical behavior of an Al-5 Mg-0.18 Mn-0.2 Sc-0.08 Zr-0.01 Fe-0.01 Si(wt.%)alloy ingot subjected to multidirectional isothermal forging(MIF)to a strain of 12 or equal-channel angular pressing(ECAP)to a strain of 10 at 325℃,and subsequent warm and cold rolling(WR and CR)at 325 and 20℃,was performed.The results showed that the MIF process of ultrafine-grained structure with a(sub)grain size dUFG=2μm resulted in enhanced room-temperature ductility and superplastic elongation up to 2800%.Further grain refinement under WR as well as development of a heavily-deformed microstructure with high dislocation density by subsequent CR resulted in a yield/ultimate tensile strength increase from 235/360 MPa after MIF to 315/460 and 400/515 MPa after WR and CR,respectively.Simultaneously,WR led to improved superplastic elongation up to 4000%,while after CR the elongation remained sufficiently high(up to 1500%).Compared with MIF,ECAP resulted in more profound grain refinement(dUFG=1μm),which promoted higher strength and superplastic properties.However,this effect smoothed down upon WR,ensuring equal properties of the processed sheets.CR of the ECAPed alloy,in contrast,led to higher strengthening and slightly better superplastic behavior than those after CR following MIF.