In this paper,we investigate the following fractional Schrödinger-Poisson system with concave-convex nonlinearities and a steep potential well{(-Δ)^(s)u+V_(λ)(x)u+ϕu=f(x)|u|^(q-2)u+|u|^(p-2)u,in R^(3),(-Δ)^(t)ϕ=u^(2),in R^(3),where s∈(3/4,1),t∈(0,1),q∈(1,2),p∈(4,2_(s)^(*)),2_(s)^(*):=6/3-2s is the fractional critical exponent in dimension 3,V_(λ)(x)=λV(x)+1 withλ>0.Under the case of steep potential well,we obtain the existence of the sign-changing solutions for the above system by using the constraint variational method and the quantitative deformation lemma.Furthermore,we prove that the energy of ground state sign-changing solution is strictly more than twice of the energy of the ground state solution.Our results improve the recent results in the literature.